PHASE FORMATION PROCESSES OF ORGANIC-INORGANIC CH3NH3PbI3 PEROVSKITES USING A DMF SOLVENT
№1

Keywords

organic-inorganic perovskite, X-ray diffraction analysis, Raman spectroscopy, intermediate compounds, stability.

How to Cite

Torchyniuk, P., V’yunov, O., Yukhymchuk, V., Hreshchuk, O., Vakarov, S., & Belous, A. (2021). PHASE FORMATION PROCESSES OF ORGANIC-INORGANIC CH3NH3PbI3 PEROVSKITES USING A DMF SOLVENT. Ukrainian Chemistry Journal, 87(8), 63-81. https://doi.org/10.33609/2708-129X.87.08.2021.63-81

Abstract

The organic-inorganic perovskite films CH3NH3PbI3 were synthesized from solutions with different ratios (1:1, 1:2 and 1:3) of initial reagents (PbI2 and CH3NH3I) in a DMF solvent. XRD and Raman spectroscopy shows that the perovskites are formed according to different schemes depending on the ratio of PbI2 and CH3NH3I. At the ratio 1:1 of initial reagents, three intermediate compounds are formed: (CH3NH3)2(DMF)xPbI4, (CH3NH3)2(DMF)2Pb3I8, (CH3NH3)3(DMF)PbI5. At the ratio 1:2 of initial reagents four intermediate compounds are formed: in addition to the above phases, the phase (CH3NH3)2(DMF)2Pb2I6 is found. And at the ratio 1:3 of initial reagents, only two intermediate phases, (CH3NH3)2(DMF)xPbI4 and (CH3NH3)3(DMF)PbI5, are observed. The morphology of the perovskite films was established to depend primarily on the ratio of the initial reagents. The temperature of heat treatment changes only the grain size of films.

https://doi.org/10.33609/2708-129X.87.08.2021.63-81
№1

References

Noh J. H., Im S. H., Heo J. H., Mandal T. N., Seok S. I., Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Letters. 2013. 13 (4): 1764–1769. https://doi.org/10.1021/nl400349b.

Valverde-Chávez D. A., Ponseca C. S., Sto­um­pos C. C., Yartsev A., Kanatzidis M. G., Sundström V., Cooke D. G., Intrinsic femtosecond charge generation dynamics in single crystal CH3NH3PbI3. Energy & Environmental Science. 2015. 8 (12): 3700–3707. https://doi.org/10.1039/c5ee02503f.

Miyata A., Mitioglu A., Plochocka P., Portugall O., Wang J. T.-W., Stranks S. D., Snaith H. J., Nicholas R. J., Direct measurement of the exciton binding energy and effective masses for charge carriers in organic-inorganic tri-halide perovskites. Nature Physics. 2015. 11 (7): 582–587. https://doi.org/10.1038/nphys3357.

Xing G., Mathews N., Sun S., Lim S. S., Lam Y. M., Grätzel M., Mhaisalkar S., Sum T. C., Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science. 2013. 342 (6156): 344–347. https://doi.org/10.1126/science:1243167.

Gonzalez-Pedro V., Juarez-Perez E. J., Arsyad W.-S., Barea E. M., Fabregat-Santiago F., Mora-Sero I., Bisquert J., Ge­neral working principles of CH3NH3PbX3 perovskite solar cells. Nano Letters. 2014. 14 (2): 888–893. https://doi.org/10.1021/nl404252e.

Valakh M. Y., Kolomys O. F., Ponoma­ryov S. S., Yukhymchuk V. O., Babichuk I. S., Izquierdo Roca V., Saucedo E., Perez Rodriguez A., Morante J. R., Schorr S., Raman scattering and disorder effect in Cu2ZnSnS4. Physica status solidi (RRL)–Rapid Research Letters. 2013. 7 (4): 258–261. https://doi.org/10.1002/pssr.201307073.

Abdulrazzaq O. A., Saini V., Bourdo S., Dervishi E., Biris A. S., Organic solar cells: a review of materials, limitations, and possibilities for improvement. Particulate science and technology. 2013. 31 (5): 427–442. https://doi.org/10.1080/02726351.2013.769470.

Nozik A. J., Quantum dot solar cells. Physica E: Low-dimensional Systems and Nanostructures. 2002. 14 (1–2): 115–120. https://doi.org/10.1016/S1386-9477(02)00374-0.

Della Gaspera E., Peng Y., Hou Q., Spiccia L., Bach U., Jasieniak J. J., Cheng Y.-B., Ultra-thin high efficiency semitransparent perovskite solar cells. Nano Energy. 2015. 13: 249–257. https://doi.org/10.1016/j.nanoen.2015.02.028.

Baig H., Kanda H., Asiri A. M., Nazeeruddin M. K., Mallick T., Increasing efficiency of perovskite solar cells using low concentrating photovoltaic systems. Sustainable Energy & Fuels. 2020. 4 (2): 528–537. https://doi.org/10.1039/c9se00550a.

Rajagopal A., Yao K., Jen A. K. Y., Toward perovskite solar cell commercialization: a perspective and research roadmap based on interfacial engineering. Advanced Materials. 2018. 30 (32): 1800455. https://doi.org/10.1002/adma.201800455.

Zhao W., Yang D., Liu S. F., Organic-inorganic hybrid perovskite with controlled dopant modification and application in photovoltaic device. Small. 2017. 13 (25): 1604153. https://doi.org/10.1002/smll.201604153.

Kojima A., Teshima K., Shirai Y., Miyasaka T., Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society. 2009. 131 (17): 6050–6051. https://doi.org/10.1021/ja809598r.

Best Research-Cell Efficiency Chart. In National Renewable Energy Laboratory, 2020. Vol. 2020.

Xie H., Liu X., Lyu L., Niu D., Wang Q., Huang J., Gao Y., Effects of precursor ratios and annealing on electronic structure and surface composition of CH3NH3PbI3 perovskite films. The Journal of Physical Chemistry C. 2016. 120 (1): 215–220. https://doi.org/10.1021/acs.jpcc.5b07728.

Cui D., Yang Z., Yang D., Ren X., Liu Y., Wei Q., Fan H., Zeng J., Liu S., Color-tuned perovskite films prepared for efficient solar cell applications. The Journal of Physical Chemistry C. 2016. 120 (1): 42–47. https://doi.org/10.1021/acs.jpcc.5b09393.

V’yunov O. I., Belous A. G., Kobylianska S. D., Kovalenko L. L., Impedance Analysis of Thin Films of Organic-Inorganic

Perovskites CH3NH3PbI3 with Control of Microstructure. Nanoscale Research Letters. 2018. 13 (1): 98. https://doi.org/10.1186/s11671-018-2509-2.

Belous A. G., V’yunov O. I., Kobylyanskaya S. D., Ishchenko A. A., Kulinich A. V., Influence of Synthesis Conditions on the Morphology and Spectral-Luminescent Properties of Films of Organic-Inorganic Perovskite CH3NH3PbI2.98Cl0.02. Russian Journal of General Chemistry. 2018. 88 (1): 114–119. https://doi.org/10.1134/S1070363218010188.

Belous A., Kobylianska S., V’yunov O., Torchyniuk P., Yukhymchuk V., Hreshchuk O., Effect of non-stoichiometry of ini-tial reagents on morphological and structural properties of perovskites CH3NH3PbI3. Nanoscale Research Letters. 2019. 14 (4): 1–9. https://doi.org/10.1186/s11671-018-2841-6.

Torchyniuk P., V’yunov O., Ishchenko A., Kurdyukova I., Vlasyuk V., Kostylyov V., Belous A., Organic-inorganic perovskite CH3NH3PbI3: morphological, structural and photoelectrophysical properties. Ukrainian Chemistry Journal. 2019. 85 (9): 31–43. https://doi.org/10.33609/0041-6045.85.9.2019.31–41.

Petrov A. A., Sokolova I. P., Belich N. A., Peters G. S., Dorovatovskii P. V., Zuba­vichus Y. V., Khrustalev V. N., Petrov A. V., Grätzel M., Goodilin E. A., Crystal structure of DMF-intermediate phases uncovers the link between CH3NH3PbI3 morphology and precursor stoichiometry. The Journal of Physical Chemistry C. 2017. 121 (38): 20739–20743. https://doi.org/10.1021/acs.jpcc.7b08468.

Roghabadi F. A., Ahmadi V., Aghmiuni K. O., Organic–Inorganic Halide Perov­skite Formation: In Situ Dissociation of Cation Halide and Metal Halide Complexes during Crystal Formation. The Journal of Physical Chemistry C. 2017. 121 (25): 13532–13538. https://doi.org/10.1021/acs.jpcc.7b03311.

Vincent B. R., Robertson K. N., Cameron T. S., Knop O., Alkylammonium lead halides. Part 1. Isolated PbI64− ions in (CH3NH3) 4PbI6•2H2O. Canadian Journal of Chemistry. 1987. 65 (5): 1042–1046. https://doi.org/10.1139/v87-176.

Kye Y.-H., Yu C.-J., Jong U.-G., Chen Y., Walsh A., Critical Role of Water in Defect Aggregation and Chemical Degradation of Perovskite Solar Cells. The journal of physical chemistry letters. 2018. 9 (9): 2196–2201.https://doi.org/10.1021/acs.jpclett.8b00406.

Imler G. H., Li X., Xu B., Dobereiner G. E., Dai H.-L., Rao Y., Wayland B. B., So­lid state transformation of the crystalline monohydrate (CH3NH3)PbI3(H2O) to the (CH3NH3)PbI3 perovskite. Chemical Communications. 2015. 51 (56): 11290–11292. https://doi.org/10.1039/C5CC03741G.

Kawamura Y., Mashiyama H., Hasebe K., Structural study on cubic-tetragonal transition of CH3NH3PbI3. Journal of the Phy­sical Society of Japan. 2002. 71 (7): 1694–1697. https://doi.org/10.1143/jpsj.71.1694.

Palosz B., The structure of PbI2 polytypes 2H and 4H: a study of the 2H-4H transition. Journal of Physics: Condensed Matter. 1990. 2 (24): 5285. https://doi.org/10.1088/0953-8984/2/24/001.

Yamamuro O., Matsuo T., Suga H., David W., Ibberson R., Leadbetter A., Neutron diffraction and calorimetric studies of methylammonium iodide. Acta Crystallographica Section B: Structural Science. 1992. 48 (3): 329–336. https://doi.org/10.1107/S0108768192000260.

Srimath Kandada A. R., Petrozza A., Pho­tophysics of hybrid lead halide perov­skites: The role of microstructure. Accounts of Chemical Research. 2016. 49 (3): 536–544. https://doi.org/10.1021/acs.accounts.5b00464.

Antoniadou M., Siranidi E., Vaenas N., Kontos A. G., Stathatos E., Falaras P., Photovoltaic Performance and Stability of CH3NH3PbI3–xClx Perovskites. Journal of Surfaces and Interfaces of Materials. 2014. 2 (4): 323–327. https://doi.org/10.1166/jsim.2014.1060.

Merdasa A., Bag M., Tian Y., Källman E., Dobrovolsky A., Scheblykin I. G., Super-resolution luminescence microspectroscopy reveals the mechanism of photoinduced degradation in CH3NH3PbI3 perovskite nanocrystals. The Journal of Physical Chemistry C. 2016. 120 (19): 10711–10719. https://doi.org/10.1021/acs.jpcc.6b03512.

Barugkin C., Cong J., Duong T., Rahman S., Nguyen H. T., Macdonald D., White T. P., Catchpole K. R., Ultralow absorption coefficient and temperature dependence of radiative recombination of CH3NH3PbI3 perovskite from photoluminescence. The journal of physical chemistry letters. 2015. 6 (5): 767–772. https://doi.org/10.1021/acs.jpclett.5b00044.

Niemann R. G., Kontos A. G., Palles D., Kamitsos E. I., Kaltzoglou A., Brivio F., Falaras P., Cameron P. J., Halogen effects on ordering and bonding of CH3NH3+ in CH3NH3PbX3 (X = Cl, Br, I) hybrid perovskites: a vibrational spectroscopic study. The Journal of Physical Chemistry C. 2016. 120 (5): 2509–2519. https://doi.org/10.1021/acs.jpcc.5b11256.

Downloads

Download data is not yet available.