calcium-copper titanate, high dielectric constant, co-precipitation, carbonate precursor.

How to Cite

Yanchevskii , O., V’yunov, O., & Plutenko, T. (2021). CARBONATE PRECURSOR ROUTE FOR PREPARATION OF CaCu3Ti4O12. Ukrainian Chemistry Journal, 87(7), 47-60.


A simple CaCu3Ti4O12 synthesis method by carbonate precipitation has been developed, which is not inferior to the known methods of precipitation from solutions. The optimum temperatures for the synthesis of powder (850 оС) and sintering of ceramics (1080 оС) have been found. The CCTO ceramic prepared has stable and fine electrical properties. In the frequency range of 1 kHz to 1 MHz, the ε’ value always is higher 104 with the dielectric losses, tan δ ~ 0.05–0.08. Such CCTO ceramic prepared by the сarbonate co-precipitation method with good electric properties should find applications in electric devices.


Ahmadipour M., Ain M. F., Ahmad Z. A., A short review on copper calcium titanate (CCTO) electroceramic: synthesis, dielectric properties, film deposition, and sensing application. Nano-micro letters. 2016. 8 (4): 291–311.

Kretly L. C., Almeida A. F. L., De Oliveira R. S., Sasaki J. M., Sombra A. S. B., Electrical and optical properties of CaCu3Ti4O12 (CCTO) substrates for microwave devices and antennas. Microwave and Optical Technology Letters. 2003. 39 (2): 145–150.

Löhnert R., Bartsch H., Schmidt R., Capraro B., Töpfer J., Microstructure and electric properties of CaCu3Ti4O12 multilayer capacitors. Journal of the American Ceramic Society. 2015. 98 (1): 141–147.

Ponce M. A., Ramirez M. A., Schipani F., Joanni E., Tomba J. P., Castro M. S., Electrical behavior analysis of n-type CaCu3Ti4O12 thick films exposed to different atmospheres. Journal of the European Ceramic Society. 2015. 35 (1): 153–161.

Kushwaha H. S., Madhar N. A., Ilahi B., Thomas P., Halder A., Vaish R., Efficient solar energy conversion using CaCu3Ti4O12 photoanode for photocatalysis and photoelectrocatalysis. Scientific reports. 2016. 6 (1): 1–10.

Subramanian M. A., Li D., Duan N., Rei­sner B. A., Sleight A. W., High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases. Journal of Solid State Chemistry. 2000. 151 (2): 323–325.

Shao S.-F., Zhang J. L., Zheng P., Zhong W. L., Wang C.-L., Microstructure and electrical properties of CaCu3Ti4O12 ceramics. Journal of Applied Physics. 2006. 99 (8): 084106–084111.

V’yunov O. I., Konchus B. A., Yanchevskiy O. Z., Belous A. G., Synthesis, properties CaCu3Ti4O12 with colossal value of the dielectric permittivity. Ukrainian Chemistry Journal. 2019. 85 (6): 77–86.

Tang H., Zhou Z., Bowland C. C., Sodano H. A., Synthesis of calcium copper titanate (CaCu3Ti4O12) nanowires with insulating SiO2 barrier for low loss high dielectric constant nanocomposites. Nano Energy. 2015. 17: 302–307.

Masingboon C., Rungruang S. In Synthesis of CaCu3Ti4O12 by modified Sol-gel method with Hydrothermal process, Journal of Physics: Conference Series, IOP Publishing: 2017; p 012101.

Liu J., Smith R. W., Mei W.-N., Synthesis of the giant dielectric constant material CaCu3Ti4O12 by wet-chemistry me­thods. Chemistry of Materials. 2007. 19 (24): 6020–6024.

Lopera A., Ramirez M. A., Garcia C., Paucar C., Marín J., Influence of Sm3+ doping on the dielectric properties of CaCu3Ti4O12 ceramics synthesized via autocombustion. Inorganic Chemistry Communications. 2014. 40: 5–7.

Li Y., Liang P., Chao X., Yang Z., Preparation of CaCu3Ti4O12 ceramics with low dielectric loss and giant dielectric constant by the sol–gel technique. Ceramics International. 2013. 39 (7): 7879–7889.

Singh L., Rai U. S., Singh N. B., Lee Y., Mahato D. K., Bhardwaj D., Mandal K. D. In Dielectric properties of CaCu3-xMgxTi4O12 (x = 0.20 and 0.50) material synthesized by the semi-wet route for energy storage capacitor, Smart Biomedical and Physiological Sensor Technology XVI, International Society for Optics and Photonics: 2019, p. 1102002.

Mao P., Wang J., Liu S., Zhang L., Zhao Y., He L., Grain size effect on the dielectric and non-ohmic properties of CaCu3Ti4O12 ceramics prepared by the sol-gel process. Journal of Alloys and Compounds. 2019. 778: 625–632.

Liu L., Fan H., Fang P., Chen X., Sol–gel derived CaCu3Ti4O12 ceramics: synthesis, characterization and electrical properties. Materials Research Bulletin. 2008. 43 (7): 1800–1807.

Guillemet-Fritsch S., Lebey T., Boulos M., Durand B., Dielectric properties of CaCu3Ti4O12 based multiphased ceramics. Journal of the European Ceramic Society. 2006. 26 (7): 1245–1257.

Zhu B. P., Wang Z. Y., Zhang Y., Yu Z. S., Shi J., Xiong R., Low temperature fabrication of the giant dielectric material CaCu3Ti4O12 by oxalate coprecipitation method. Materials Chemistry and Phy­sics. 2009. 113 (2–3): 746–748.

Barbier B., Combettes C., Guillemet-­Fritsch S., Chartier T., Rossignol F., Rumeau A., Lebey T., Dutarde E., CaCu3Ti4O12 ceramics from co-precipitation method: Dielectric properties of pellets and thick films. Journal of the European Ceramic Society. 2009. 29 (4): 731–735.

Lu J., Wang D., Zhao C., CaCu3Ti4O12 ceramics from basic co-precipitation (BCP) method: Fabrication and properties. Journal of Alloys and Compounds. 2011. 509 (6): 3103–3107.

Thomazini D., Gelfuso M. V., Volpi G. M. S., Eiras J. A., Conventional and Microwave‐Assisted Sintering of CaCu3Ti4O12 Ceramics Obtained from Coprecipitated Powders. International Journal of Applied Ceramic Technology. 2015. 12: E73–E81.

Le Bail A., Whole powder pattern decomposition methods and applications: A retrospection. Powder Diffraction. 2005. 20 (4): 316–326.

AENOR, ISO 13383-1:2016 Fine ceramics (advanced ceramics, advanced technical ceramics) - Microstructural characterization - Part 1: Determination of grain size and size distribution (ISO 13383-1:2012). International Organization for Standardization: Geneva, Switzerland, 2016. p 29.

He L., Neaton J. B., Cohen M. H., Vanderbilt D., Homes C. C., First-principles study of the structure and lattice dielectric response of CaCu3Ti4O12. Physical Review B. 2002. 65 (21): 214112.

Lunkenheimer P., Fichtl R., Ebbinghaus S. G., Loidl A., Nonintrinsic origin of the colossal dielectric constants in CaCu3Ti4O12. Physical Review B. 2004. 70 (17): 172102.

Pershina K. D., Kazdobin K. A., Impedance spectroscopy of electrolytic materials. Education of Ukraine: Kyiv, 2012; p 223. ISBN 978-966-188-321-4.

Lunkenheimer P., Krohns S., Riegg S., Ebbinghaus S. G., Reller A., Loidl A., Colossal dielectric constants in transition-metal oxi­des. The European Physical Journal-Special Topics. 2010. 180 (1): 61–89.

Brizé V., Gruener G., Wolfman J., Fatyeyeva K., Tabellout M., Gervais M., Gervais F., Grain size effects on the dielectric constant of CaCu3Ti4O12 ceramics. Materials Science and Engineering: B. 2006. 129 (1–3): 135–138.

Prakash B. S., Varma K. B. R., Effect of sintering conditions on the dielectric properties of CaCu3Ti4O12 and La2/3Cu3Ti4O12 ceramics: A comparative study. Physica B: Condensed Matter. 2006. 382 (1–2):

–319. 2006.03.005.

Pershina, E.D., Karpushin, N.A. & Kaz­dobin, K.A. Aluminosilicate conductivity at the presence of water. Surf. Engin. Appl.Electrochem. 46, 339–347 (2010).


Download data is not yet available.