solid solution, lithium-lanthanum titanate-aluminate, complex impedance, dielectric properties.

How to Cite

Plutenko, T., V’yunov, O., Khomenko, B., & Belous, A. (2020). SYNTHESIS AND DIELECTRIC PROPERTIES OF La0.67LixTi1-xAlxO3 (0.15≤x≤0.3) CERAMICS. Ukrainian Chemistry Journal, 86(11), 13-23.


Solid solutions of Al-doped lithium lanthanum titanates La0.67LixTi1-xAlxO3 system (where 0.15 ≤ x ≤ 0.3) have been synthesized by solid-state reaction technique. Light optical microscopy has shown that the grain size of La0.67LixTi1-xAlxO3 ceramics insignificantly increases with an increase in lithium/aluminum concentration. The materials La0.67LixTi1-xAlxO3 show very high dielectric permittivity ε΄ 104 over a relatively wide frequency range (10≤ ≤ 10Hz) with no apparent dependence on the x. The impedance spectroscopy study indicates three semicircles on Cole-Cole diagram that can be attributed to electrically different areas of ceramic’s grain.


1. Belous, A. G.; Kobylianska, S. D., Lithium conducting solid oxide electrolytes. Naukova Dumka: Kyiv, 2018; p 318. [in Russian]. ISBN: 978-966-00-1614-9.
2. Belous, A. G., Synthesis and electrophysical properties of novel lithium ion conducting oxides. Solid State Ionics 1996, 90 (1-4), 193–196.
3. Belous, A. G.; Butko, V. I.; Novitskaya, G. N.; Polyanetskaya, S. V.; Poplavko, Y. M.; Khomenko, B. S., Electrical conductivity of the perovskites La2/3 xM3xTiO3. Ukrainian Journal of Physics 1986, 31, 576-581. [in Russian].
4. Belous, A. G.; Novitskaya, G. N.; Polyanetskaya, S. V.; Gornikov, Y. I., Investigation into complex oxides of La2/3-xLi3xTiO3 composition. Izv. Akad. Nauk SSSR, Neorg. Mater 1987, 23 (3), 470-472. [in Russian].
5. Stramare, S.; Thangadurai, V.; Weppner, W., Lithium lanthanum titanates: a review. Chem. Mater. 2003, 15 (21), 3974-3990.
6. Mehrer, H., Fast ion conductors. In Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes, 2007; pp 475-490. ISBN: 3540714863.
7. Morata-Orrantia, A.; García-Martín, S.; Morán, E.; Alario-Franco, M. Á., A New La2/3LixTi1-xAlxO3 Solid Solution: Structure, Microstructure, and Li+ Conductivity. Chem. Mater. 2002, 14 (7), 2871-2875.
8. Morata-Orrantia, A.; García-Martín, S.; Alario-Franco, M. A., Optimization of lithium conductivity in La/Li titanates. Chem. Mater. 2003, 15 (21), 3991-3995.
9. García-Martín, S.; Morata-Orrantia, A.; Aguirre, M. H.; Alario-Franco, M. Á., Giant barrier layer capacitance effects in the lithium ion conducting material La0.67Li0.25Ti0.75Al0.25O3. Appl. Phys. Lett. 2005, 86 (6), 043110.
10. García-Martín, S.; Morata-Orrantia, A.; Alario-Franco, M. Á., Influence of the crystal microstructure on the dielectric response of the La0.67Li0.2Ti0.8Al0.2O3. J. Appl. Phys. 2006, 100 (7), 054101.
11. Rivera, A.; León, C.; Santamaría, J.; Vá­rez, A.; V’yunov, O.; Belous, A.; Alonso, J.; Sanz, J., Percolation-Limited Ionic Diffusion in Li0.5-xNaxLa0.5TiO3 Perovskites (0 ≤ x ≤ 0.5). Chem. Mater. 2002, 14 (12), 5148-5152.
12. Amador, U.; García-Martín, S.; Morata-Orrantia, A.; Rodríguez-Carvajal, J.; Alario-Franco, M. Á., Structure and Microstructure Study of Oxides of the La2/3-xLi3xTiO3-family. MRS Online Proceedings Library Archive 2008, 1126, S14-06.
13. García-Martín, S.; Morata-Orrantía, A.; Alario-Franco, M.; Rodríguez-Carvajal, J.; Amador, U., Beyond the structure-property relationship paradigm: influence of the crystal structure and microstructure on the Li+ conductivity of La2/3LixTi1-xAlxO3 oxides. Chemistry. A European Journal 2007, 13 (19), 5607.
14. Alonso, J. A.; Sanz, J.; Santamaría, J.; León, C.; Várez, A.; Fernández‐Díaz, M. T., On the location of Li+ cations in the fast Li‐cation conductor La0.5Li0.5TiO3 perovskite. Angew. Chem. 2000, 112 (3), 633-635. (20000204)39:3<619::AID-ANIE619>3.0. CO;2-O.
15. Le Bail, A., Whole powder pattern decomposition methods and applications: A retrospection. Powder Diffr. 2005, 20 (4), 316-326.
16. Collins, T. J., High-content screening. BioTechniques 2007, 43 (1), 25-29.
17. AENOR, ISO 13383-1:2016 Fine ceramics (advanced ceramics, advanced technical ceramics) - Microstructural characterization - Part 1: Determination of grain size and size distribution (ISO 13383-1:2012). International Organization for Standardization: Geneva, Switzerland, 2016; p 29.
18. Yokoyama, M.; Ota, T.; Yamai, I.; Takahashi, J., Flux growth of perovskite-type La2/3TiO3 x crystals. J. Cryst. Growth 1989, 96 (3), 490-496.
19. Rahaman, M. N., Ceramic processing. Kirk‐Othmer Encyclopedia of Chemical Technology 2000, 1-98.
20. Morrison, F. D.; Sinclair, D. C.; West, A. R., Characterization of lanthanum‐doped ba­ri­um titanate ceramics using impedance spectroscopy. J. Amer. Ceram. Soc. 2001, 84 (3), 531-538. j.1151-2916.2001.tb00694.x.
21. Morrison, F. D.; Sinclair, D. C.; West, A. R., An Alternative Explanation for the Origin of the Resistivity Anomaly in La‐Doped BaTiO3. J. Amer. Ceram. Soc. 2001, 84 (2), 474-76. 2001.tb00684.x.
22. Abram, E. J.; Sinclair, D. C.; West, A. R., A strategy for analysis and modelling of impedance spectroscopy data of electroceramics: doped lanthanum gallate. J. Electroceram. 2003, 10 (3), 165-177.
23. Gangadharudu, D.; Babu, Y. N. C. R.; Rao, B. V.; Rao, K. S., Dielectric Spectroscopy Studies on Lead Sodium Bismuth Potasium Neobate (PNBKN) Ceramic. International Journal of Advanced Research in Physical Science 2015, 2 (3), 7-21.


Download data is not yet available.