titanium, electrode processes, hydrides, kinetic parameters

How to Cite

Kozin, V., & Bliznyuk, A. (2022). HYDROGEN’S EVOLUTION ON TITANIUM ELECTRODE FROM SULFURIC ACID SOLUTION. Ukrainian Chemistry Journal, 88(2), 138-146. https://doi.org/10.33609/2708-129X.88.02.2022.138-146


Thanks to the unique combination of physicochemical properties, metal hydrides (MH) are widely used in various fields of science and technology. High thermal, chemical and radiation resistance MH allows it to be used in nuclear industry as a material for nuclear reactors, chemical engineering, metallurgy for the production and refining of metals, for the production of devices operating at elevated temperatures and in adverse conditions. Unique properties MH are widely used in hydrogen energy as hydrogen storage, in rechargeable batteries. Analysis of literature data has shown that most studies are devoted to the practical use of the unique MH ability of reversibly absorbs a large amount of hydrogen. However, the electrochemical characteristics of the electrode processes of metal hydride systems were practically not investigated.

The aim of this work is to study the processes that take place on the titanium electrode in sulfuric acid solutions, and the composition of titanium compounds that are formed. The paper presents the results of studies of the hydride formation reactions occurring on a polarized titanium cathode in aqueous solution 2 N sulfuric acid. The study was carried out using the following methods: the cyclic voltammetry and the method of x-ray phase analysis of the composition of the surface. It has been found that the reduction of hydrogen at the titanium cathode from a solution of sulfuric acid is accompanied by the formation of hydrides, which causes an increase in the overvoltage of hydrogen evolution and high values of the angular coefficients of the Tafel dependence. The kinetic parameters of this process have been calculated: the transfer coefficients α, theoretical and experimental angular coefficients btheor  and bexp , exchange currents ie, the dependence of the hydrogen overvoltage from temperature. It has been found that exchange current density of hydrogen evolution reaction in this system is close by value to the current exchange of hydrogen evolution at the noble metals Pd, Pt, Rh, Ir and are (2,70∙÷0,8)∙10-3А·sm-2 in the temperature range 298 ÷ 343 K. The value of activation energy of 19,83 kJ mol-1 indicates the diffusion control of this process.



Devyatyh G. G., Zorin A., D. Letuchie neorganicheskie gidridy osoboj chistoty. M. :Nauka, 1974. 207 p. (in Russian)

Elektrohіmіchnij sposіb otrimannya gіdridu germanіyu: pat. UA № 70405 Ukraїna: MPK (2012) S 25s 1/00 V 6/00. № u 2011 13734; zayavl.22.11.2011; opubl. 11.06. 2012; Byul.№ 11.

Kudiiarov V. N., Syrtanov M.S., Bordulev Yu.S. et al. The hydrogen sorption and desorption behavior in spherical powder of pure titanium used for additive manufac-turing. International Journal of Hydrogen Energy. 2017. 42(22): 15283–15289. https://doi.org/10.1016/j.ijhydene.2017.04.248

Kalin B. A., Skorov D. M., Akushin V. L. Problemy vybora materialov dlya termoyadernyh reaktorov. M.: Energoatomizdat. 1985. 184 p. (in Russian)

Tarasov B. P., Lotockij M. V. Vodorodnaya energetika: proshloe, nastoyashchee, vidy na budushchee Rossijskij Himicheskij Zhurnal (Zhurnal Rossijskogo himicheskogo obshchestva im. D.I. Mendeleeva). 2006. 50(6): 14. (in Russian)

Tarasov B. P., Lotockij M. V., Yartys' V. A. Problema hraneniya vodoroda i perspektivy ispol'zovaniya gidridov dlya akkumulirovaniya vodoroda. Rossijskij Himicheskij Zhurnal. 2006. L (6):34–50. (in Russian)

Petrij O. A., Levin E. E. Vodorodakkumuliruyushchie materialy v elektrohimicheskih sistemah. Tam zhe. 2006. L (6): 115–119. (in Russian)

Ershova T. B., Teslina M. A., Vlasova N. M., Astapov I. A. Elektrodnye materialy na osnove intermetallidov titana: poluchenie i svojstva. Elektronnaya obrabotka materialov. 2016. 52(4): 74–78. (in Russian)

Gel'd P. V., Ryabov R. A., Mohracheva L. P. Vodorod i fizicheskie svojstva metallov i splavov. Gidridy perekhodnyh metallov. M.: Nauka. 1985. 232 p. (in Russian)

Petrij O. A., Gogigadze I. L., Vasin S. YA. Dvojnoj sloj i adsorbciya na tverdyh elektrodah t.7 (Tez dokl.) Iz-vo Tartuskogo un-ta. Tartu. 1985. p. 263. (in Rus-sian)

Bulychev N.A. Experimental Studies of Process of Hydrogen Synthesis in Plasma Discharge in a Liquid-Phase Stream. Alternative Energy and Ecology (IS-JAEE). 2019. (4-6): 46–50. (In Russ.) https://doi.org/10.15518/isjaee.2019.04-06.046-050

Gary Sandrock A panoramic overview of hydrogen storage alloys from a gas reaction point of view. Journal of Alloys and Compounds. 1999. 293–295(20): 877–888 https://doi.org/10.1016/S0925-8388(99)00384-9

Kozin V. F., Bliznyuk A. V. Obrazovanie gidridov germaniya pri katodnoj polyarizacii germanat-aniona v shchelochnyh elektrolitah. Ukr. him. zhurnal. 2015. 81(3): 29–35.

23rd European Crystallographic Meeting, ECM23, Leuven, 2006 Acta Cryst. (2006).A62, s251 CCP14 (Collaborative Computational Project for Single Crystal and Powder Diffractio http://www.ccp14.ac.ukn)

Wipf H., Kappesser B., Werner R. Hydrogen diffusion in titanium and zirconium hydrides. Journal of Alloys and Compounds. 2000. 310(1–2): 190–195 https://doi.org/10.1016/S0925-8388(00)00945-2

Kaess U., Majer G., Stoll M. et al. Hydrogen and deuterium diffusion in titanium dihydrides/dideuterides. Journal of Alloys and Compounds. 1997. 259(1-2): 74–82. doi:10.1016/S0925- 8388(97)00124-2.

Stuhr U., Steinbinder D., Wipf H., Frick B. Hydrogen Diffusion in f.c.c. TiHx and YHx: Two distinct examples for diffusion in a concentrated lattice gas. Euro-physics Letters (EPL). 1992. 2(2):117–123 https://doi.org/10.1209/0295-5075/20/2/005

Frumkin A.N. Izbrannye trudy: Elektrodnye processy M.: Nauka. 1987. 336 p.

Fetter K. Jelektrohimicheskaja kinetika. M.: Himija. 1967. 856 p. (in Russian)

Frumkin A.N. Izbrannye trudy: Perenaprjazhenie vodoroda. M.: Nauka. 1988. 240 p. (in Russian)

Hejfec V.L., Krasikov B.C., Rotinyan A.L. K voprosu o roli potenciala nulevogo zaryada v uravneniyah elektrohimicheskoj kinetiki. Elektrohimiya. 1970. 6(7): 916–924. (in Russian)


Download data is not yet available.