STRUCTURE AND SPECTRAL-LUMUINESCENT PROPERTIES OF LANTHANIDE-CONTAINING COMPLEXES WITH AZACROWN CALIXARENES
№4

Keywords

lanthanide complexes, calix[4]arenes, azacrown ethers, luminescence.

How to Cite

Smola, S., Rusakova, N., Alekseeva, O., Basok, S., Kirichenko, T., Korovin, O., Malinka, O., & Semenishyn, N. (2021). STRUCTURE AND SPECTRAL-LUMUINESCENT PROPERTIES OF LANTHANIDE-CONTAINING COMPLEXES WITH AZACROWN CALIXARENES. Ukrainian Chemistry Journal, 87(10), 103-115. https://doi.org/10.33609/2708-129X.87.10.2021.103-115

Abstract

Lanthanide complexes with calix[4]arenes lower rim substituted with two azacrown ether fragments are reported. The size of the substituent cavity varied from 4 to 6 heteroatoms. The complexes were analyzed by means of IR, NMR, ESI mass spectroscopy. It is assumed that the coordination of Ln(III) ions occurs through the donor atoms of the lower rim; the counter anion and solvent molecule are also coordinated. Lanthanide-centered characteristic luminescence was observed in Eu(III), Tb(III) and Yb(III) complexes. The most efficient 4f-luminescence is observed for terbium-containing complexes with benzo-crown-derived ligands. The pathways of the sensitization of 4f-luminescence are discussed.

https://doi.org/10.33609/2708-129X.87.10.2021.103-115
№4

References

Othman A.B., Mellah B., Abidi R., Kim J.S., Kim Y., Vicens J. Complexing properties of pyrenyl-appended calix[4]arenes towards lanthanides and transition metal cations. J. Incl. Phenom. Macrocycl. Chem. 2020. 97: 187–194. doi: 10.1007/s10847-020-00993-0.

Mokhtari B., Pourabdollah K. Application of Nano-Baskets for Extraction of Lanthanides. J. Chem. Res. 2012. 36(12): 740–743. doi:10.3184/174751912X13527973569178.

Chinta J.P., Ramanujam B., Rao C.P. Structu­ral aspects of the metal ion complexes of the conjugates of calix[4]arene: Crystal structures and computational models. Coord. Chem. Rev. 2012. 256: 2762–2794. doi: 10.1016/j.ccr.2012.09.001.

Furphy B.M., Harrowfield J.M., Kepert D.L., Skelton B.W., White A.H., Wilner F.R.. Bimetallic lanthanide complexes of the calixarenes: europium(III) and tert-butylcalix[8]arene. Inorg. Chem. 1987. 26 (25): 4231–4236. doi: 10.1021/ic00272a018.

Delaigue X., Harrowfield J., Hosseini M., De Cian A., Fischer J., Kyritsakas N. Exoditopic receptors I: synthesis and structural studies on p-tert-butyltetramercaptocalix[4]arene and its mercury complexes. J. Chem. Soc., Chem. Commun. 1994. 1579–1580. doi: 10.1039/C39940001579.

Harrowfield J., Ogden M., Richmond W., White A. Lanthanide ions as calcium substitutes: a structural comparison of europium and calcium complexes of a ditopic calixarene. J. Chem. Soc., Dalton Trans. 1991. 2153–2160. doi: 10.1039/DT9910002153.

Alekseeva E.A., Basok S.S., Mazepa A.V., Luk’yanenko A.P. , Snurnikova O.V., Gren’ A.I. p-tert-Butylcalix[4]arenes containing aza­crown ether substituents at the lower rim as potential polytopic receptors. Russ. J. Gen. Chem.. 2013. 83: 1738–1743. doi: 10.1134/S1070363213090181.

Alekseeva E.A., Basok S.S., Rakipov I.M., Ma­zepa A.V., Gren’ A.I. Specific features of the reduction of disubstituted amide derivatives of p-tert-butylcalix[4]arene. Russ. J. Org. Chem. 2013. 49: 1035–1041. doi: 10.1134/S1070428013070130.

Rudkevich D., Verboom W., Tol E. Calix[4]arene-triacids as receptors for lanthanides; synthesis and luminescence of neutral Eu3+ and Tb3+ complexes. J. Chem. Soc. Perkin Trans. 1995. 2: 131–134. doi: 10.1039/P29950000131.

Sabbatini N., Guardigli M., Mecati A., Balzani V., Ungaro R., Ghidini E., Casnati A., Pochini A. Encapsulation of lanthanide ions in calixarene receptors. A strongly luminescent terbium (3+) complex. J. Chem. Soc., Chem. Commun. 1990. 878–879. doi: 10.1039/C39900000878.

Latva M., Takalo H., Mukkala V.-M., Mata­chescu C., Rodriguez-Ubis J.C., Kankare J. Correlation between the lowest triplet state energy level of the ligand and lanthanide(III) luminescence quantum yield. J. Lumin. 1997. 75: 149–169. doi: 10.1016/S0022-2313(97)00113-0.

Williams A.T.R., Winfield S.A., Miller J.N. Relative fluorescence quantum yields using a computer controlled luminescence spectro­meter. Analyst. 1983. 108: 1067–1071. doi: 10.1039/AN9830801067.

Horrocks W. deW. Jr., Sudnick D. R. Lanthanide ion probes of structure in biology. Laser-induced luminescence decay constants provide a direct measure of the number of metal-coordinated water molecules. J. Am. Chem. Soc. 1979. 101(2): 334–340. doi: 10.1021/ja00496a010.

Binnemans K. Interpretation of europium (III) spectra. Coord. Chem. Rev. 2015; 295: 1–45. doi: 10.1016/j.ccr.2015.02.015.

Bünzli J.C.G., Choppin G.R. Lanthanide probes in life, chemical and earth sciences: Theory and practice. Amsterdam, Oxford, New York: Elsevier. 1989. 432.

Aulsebrook M.L., Graham B., Grace M.R., Tuck K.L., Lanthanide complexes for luminescence-based sensing of low molecular weight analytes. Coord. Chem. Rev. 2018. 375: 191–220. doi: 10.1016/j.ccr.2017.11.018.

Parker D., Fradgley J.D., Wong K.-L. The design of responsive luminescent lanthanide probes and sensors. Chem. Soc. Rev.. 2021. 50: 8193–8213. doi: 10.1039/D1CS00310K.

Downloads

Download data is not yet available.