1,2,4-triazole, zinc, fluorescence, DFT.

How to Cite

Khomenko, D., Doroshchuk, R., Starova, V., Raspertova, I., Severinovskaya, O., & Lampeka, R. (2020). SYNTHESIS AND STUDY OF PROPERTIES OF ZINC COMPLEX WITH 3-(2-PYRIDYL)-5-(3,4,5-TRIMETOXYPHENYL)-1,2,4-TRIAZOLE. Ukrainian Chemistry Journal, 86(6), 65-73.


A procedure has been developed for the synthesis of a zinc complex with chelating li-gand 3-(2-pyridyl)-5-(3,4,5-trimethoxyphenyl)-1,2,4-triazole. Within the framework of the density functional method, with the B3LYP functional in the SBKJC basis, the equilibrium geometry of the ground electronic state of the ligand molecule and zinc complex was determined. The physicochemical properties of the ligand were also characterized: logP = 4.1±0.1, рКf1 = 3.31±0.05,  рКf2 = 10.2±0.1,  ε275 ≈ 1·105 l·mol–1·cm–1. It was shown that complexation is accompanied by an increase in fluorescence  intensity, for the complex λemmax ≈ 458 nm.  The absorption spectrum of the complex is characterized by two bands with maxima at 278 nm (ε278 ≈ 1.3·104 l·mol–1·cm–1) and 322 nm (ε322 ≈ 1.2·104 l·mol–1·cm–1).


Steed J., Atwood J. Supramolecular Chemistry (John Wiley & Sons, 2009) ISBN-13: 978-0470512340.

Walkup G., Burdete S., Lippard S., Tsien R. A New Cell-Permeable fluorescent probe for Zn2+. Journal of the American Chemical Society. 2000. 122: 5644.

Maruyama S., Kikuchi K., Hirano T., Yasuteru U., Nagano T. A novel, cell-permeable, fluorescent probe for ratiometric imaging of zinc ion. Journal of the American Chemi-cal Society. 2002. 124: 10650.

Domaille D., Que E., Chang C. Synthetic fluorescent sensors for studying the cell bi-ology of metals. Nature Chemical Biology. 2008. 4: 168.

Zakharchenko B.V., Khomenko D.M., Do-roshchuk R.O., Severinovskaya O.V., Sta-rova V.S., Raspertova I.V., Lampeka R.D. Synesis, structure and spectral properties of the complex of palladium (II) with 3-(2-pyridyl)-5-(3,4,5-trimethoxyphenyl)-1,2,4-triazole. Ukrainian Chemistry Journal. 2016. 82 (7): 28.

Kimura E., Koike T. Recent development of zinc-fluorophores. Chemical Society Reviews. 1998. 27: 179.

Khomenko D.M., Doroshchuk R.O., Lampeka R.D. Synthesis and structure of co-ordination compounds of palladium with 5-(2-pyridyl)-1,2,4-triazole-α-acetic acid ethyl ester. Ukrainian Chemistry Journal. 2009. 75 (7): 30.

Skopenko V.V., Savransky L.I. Coordina-tion chemistry. K.: Lybid, 1997, 336 p. [in Ukrainian].

Becke A. Density-functional thermochemi-stry. III. The role of exact exchange. Journal of Chemical Physics. 1993. 98: 5648.

Lee C., Yang W., Parr R. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B. 1988. 37: 785.

Francl M., Petro W., Hehre W., Binkley J., Gordon M., DeFrees D., Pople J. Self-Consistent Molecular Orbital Methods. XXIII. A Polarization-Type Basis Set for Second-Row Elements. Journal of Chemical Physics. 1982. 77: 3654.

Granovsky A. (2015) Firefly version 8.1.1, build number 9295, Compiled 31 Aug 2015.

Khomenko D.M., Doroshchuk R.O., Lampeka R.D. A NMR spectroscopic and X-Ray diffraction study of coordination compounds of zinc with 3-(2-pyridyl)-1,2,4-triazole derivatives. Ukrainian Chemistry Journal. 2012. 78 (7): 45.

Kharlova M., Piletska K., Domasevitch K., Shtemenko A. Crystal structure of bromidofactricarbonyl[5-(3,4,5-trimethoxyphenyl)-3-(pyridin-2-yl)-1H-1,2,4-triazole-2 N 2, N 3] rhenium (I) methanol monosolvate. Acta Crystallogr., Sect. E:Cryst.Commun. 2017. 73: 484.


Download data is not yet available.