polybutoxytitanates, kinetics, reaction rate constant, substituted benzoic acids, aniline, substituted benzanilides, Hammett equation, catalysis.

How to Cite



The polybutoxytitanates catalysis of acylation of anilines by meta- and parasubstituted benzoic acid results in substituted benzanilides. The rate constants of this second-order reaction (the first in terms of aniline and substituted benzoic acid; boiling ortho-xylene, 145 °С) correlates well according to the Hammett equation with two straight lines for individual groups of substituents with ρ = 1.76 (electron donors) and 0.12 (electron acceptors). Oxybenzoic and phthalic acids, that do not react with aniline and inhibit the interaction of the latter with benzoic acid, fall out of this dependence. Based on these data, as well as the results of a previous studies of the interaction of substituted anilines with a benzoic acid made under comparable conditions, a mechanism of bifunctional catalysis due to the formation of titanium polybutoxybenzoates in the first minutes of the reaction in situ — the true catalysts of the process, is proposed. The nucleophilic center of the catalyst can be represented by the carbonyl group of a substituted  benzoate  bound  to a titanium  atom, forming an H-bond with hydrogen atoms of the amino  group of aniline, thus activated to react with  a substituted  benzoic  acid. The titanium atoms of polytitanate (coordination catalysis) and their complexes with the resulting substituted benzanilides (acid catalysis) can act as the electrophilic center of a catalyst that activates the carbonyl group of a substituted benzoic acid to nucleophilic attack by aniline. A titanium  atom bound  to a substituted  benzoate  exhibits, depending on the nature of the substituent, various  catalytic  activity.


1. Leggio А., Bagalа J., Belsito E. L., Comandu A., Greco M., Liguori A. Formation of amides: one‑pot condensation of carboxylic acids and amines mediated by TiCl4.// Chem. Cent. J. –2017. – 11(1): 87.
2. Lundberg Н. Group (IV) metal-catalyzed direct amidation. Synthesis and mechanistic considerations. Stockholm University, Department of Organic Chemistry, 2015.
3. Lundberg H., Tinnis F., Selander N., Adolfsson H. Catalytic amide formation from non-activated carboxylic acids and amines. Chem. Soc. Rev. – 2014. – 43: 2714.
4. Shteinberg L.Ya., Коndratov S. А., Shein S. M. Metallocomplex catalysis in the acylation of aniline by substituted benzoic acids. // Zhurn. organ. khimii. – 1988. – 24(9): 1968.
5. Коndratov S.А., Shteinberg L.Ya., Shein S.M. Catalytic synthesis of anilide of 2,3-hydroxynaphthoic acid.//Zhurn. organ. khimii. – 1993. – 29(9): 1914.
6. Shteinberg L.Ya. The effect of substituents on the reaction rate of substituted anilines with benzoic acid, catalyzed by polybutoxytitanates. // Ukr. khim. zhurn. – 2020. – 86(1): 3.
7. Shteinberg L.Ya. Catalysis in the acylation of arylamines by aromatic carboxylic acids: Dis. cand. chemical sciences. – Moscow,1988.
8. Shteinberg L.Ya. The effect of the addition of substituted benzanilides on the rate of the reaction of aniline with benzoic acid, catalyzed by tetrabutoxy titanium and polybutoxytitanates // Ukr. khim. zhurn. – 2019. – 85(1): 19.
9. Panchenkov G. M., Lebedev V. P. Chemical kietics and catalysis. Training for universities. – Мoscow: Chimiya, 1985) [in Rus-sian].
10. Maslosh V. Z., Chasnyk O. F., Popov A. F., Kudyukov Yu. P., Svechkareva V. N. Ki-netics of the reaction of benzoic acid with amines in melts. Dokl. AN Ukrainian SSR. Series «B». Geological, chemical and biological sciences. – 1982. (4): 37.
11. Zhdanov Yu. А., Minkin V. I. Correlation analysis in organic chemistry. – Rostov: Publishing house of Rostov University, 1966 [in Russian].
12. Davis M. M., Hetze H. B. Relative strengths of forty aromatic carboxylic acids in benzene at 25 ⁰C. J. Res. National Bu-reau of Standards. – 1958. 60(6): 569.
13. Аlbert А., Serjeаnt Е. Acid and base ionization constants. – M. –L.: Khimiya, 1964 [in Russian].
14. Perreux L., Loupy A., Volatron F. Solvent free preparation of amides from acids and amines under microwave irradiation. Tetrahedron. – 2002. – 58(11): 2155.
15. Charville H., Jackson D. A., Hodges G., Whiting A., Wilson M. R. The Uncatalyzed direct amide formation reaction — mechanism studies and the key role of carboxylic acid H-bonding. // Eur. J. Org. Chem. – 2011. – (30): 5981.
16. Bender M., Bergeron R., Коmiyama M. Bioorganic chemistry of enzymatic catalysis. – М.: Мir, 1987 [in Russian].
17. Litvinenko L. M., Oleynik N. M. Organic catalysts and homogeneous catalysis. – Ky-iv: Naukova dumka, 1981 [in Russian].
18. Shteinberg L.Ya. Influence of anilines con-centration on speed of the benzanilides formation, catalyzed by hydrolysis products of tetrabutoxytitan. // Ukr. khim. zhurn. 2017. 83(12): 1.
19. Shteinberg L.Ya., Marshalova V.V., Shein S.M. The effect of the benzoic acid concentration on the rate of the tetrabutoxytitanium-catalyzed reaction of the benzanilide formation. // Zhurn. оbsh. khimii. 2012. 82(5): 798.
20. Shteinberg L.Ya., Marshalova V.V., Dibro- va V.M., Shein S.M. The influence of the components of the reaction mixture on the hydrolytic stability of tetrabutoxytitanium, a catalyst for the synthesis of benzanylide. – Zhurn. оbsh. khimii . – 2008. – 78(9): 1463.
21. Khitrov G. A., Strouse G. F., Gaumet J.-J. Characterization of Ti6O4(O2C4H5)8(OCH2-CH3)8 by electrospray time of flight mass spectrometry. J. Amer. Soc. Mass spectrum. – 2004. (15): 260.
22. /component/file_2452796/content Benedetti Cesare. Multifunctional metal oxocluster/ polymer hybride nanoparticles: Dis. Dr. rer. nat. – Mainz, 2017.
23. Janek M., Radtke A., Muzioł T. M., Jerzykiewicz M., Piszczek P. Tetranuclear oxotitanium clusters with different carboxylate aromatic ligands: optical properties, DFT calculations, and photoactivity. Materials, 2018. (11): 1661; doi:10.3390/ma11091661. www.
24. Janek M., Muzioł T.M., Piszczek P. The structure and photocatalytic activity of the tetranuclear titanium (IV) oxocomplex with 4-aminobenzoate ligands. Polyhedron. – 2018. – 141(15): 110.
25. Shteinberg L.Ya., Kondratov S.A., Shein S. M., Mishchenko S. E., Dolmat V. M., Dibrova V. M. Water as a regulator of the catalytic activity of tetrabutoxytitanium in the reaction of amide formation. Kinetics and Catalysis. 1999. 40(4): 566.
26. Shteinberg L.Ya., Shein S.M., Mishenko S.Ye. Influence of tetrabutoxytitan «aging» on catalytic activity in the acylation reac-tion of aniline by benzoic acid. // Zhurn. organ. khimii. – 1995. – 31(2): 233.
27. Shmid R., Sapuov V.N. Non-formal kinet-ics. In search of ways of chemical reactions. – Мoscow: Mir, 1985 [in Russian].
28. Nosova D. A. The effect of aggregation on the spectral characteristics of benzoic acid derivatives: Dis. cand. physics and mathematics sciences. – S.-P., 2018.
29. Litvinenko L. M., Garkusha-Bozko I. P., Oleynik N. M., Klebanov M. S., Nesterenko Yu. А. Tin (IV) compounds are catalysts for the peptide formation reaction. The effect of the structure of catalysts. // Zhurn. organ. khimii. – 1981. – 17(2): 307.
30. Lundberg H., Tinnis F., Zhang J., Algarra A., Himo F., Adolfsson H. Mechanistic elucidation of zirconium-catalyzed direct amidation. J. Amer. Chem. Soc. – 2017. – 139(6): 2286.
31. Kaupmees К., Järviste R., Leito I. Basici-ty of very weak bases in 1,2‐dichloroethane. // Chem. Eur. J. – 2016. – 22(48): 17445.
32. Dang Y. Coordination chemistry of cyclopentadienyl titanium carboxylates and re-lated complexes. Coordination Chemistry Reviews. – 1994. – 135–136: 93.
33. Popova Т. N. Coordination compounds of metals of the subgroup of titanium with nitrogen- and oxygen-containing ligands: Dis cand. chemical sciences. – Kishinyov, 1980.
34. Romashkin S. V. Study of the properties and transformations of tetrabutoxy titanium with organic dihydroxy compounds: Dis. cand. Chemical sciences. – Moscow, 2013.
35. Absalan Yahya. Metal complex compounds of group IVB with certain hydroxyl-con-taining ligands and their use for the synthesis of nanosized photodegradation of polyphenols: Dis. cand. chemical sciences. – Moscow, 2018.
36. Jianwei Wang, Yingchun Ren, Sheng Xu, Puke Mi. Synthesis of ArOTiCl3-complexes and their application for ethylene polymerization and copolymerization. Advances in Materials Research. – 2017. – 6(3): 303.


Download data is not yet available.