CATHODE MATERIALS OF ROCK SALT DERIVATIVE STRUCTURES FOR SODIUM-ION SECONDARY POWER SOURCES
№5

Keywords

sodium-ion batteries, sodium intercalation, layered oxide structures, cathode materials.

How to Cite

Malovanyy, S. (2019). CATHODE MATERIALS OF ROCK SALT DERIVATIVE STRUCTURES FOR SODIUM-ION SECONDARY POWER SOURCES. Ukrainian Chemistry Journal, 85(9), 44-57. https://doi.org/10.33609/0041-6045.85.9.2019.44-57

Abstract

The rechargeable lithium-ion batteries have been dominating the portable electronic market for the past two decades with high energy density and long cycle-life. However, applications of lithium-ion batteries in large-scale stationary energy storage are likely to be limited by the high cost and availability of lithium resources. The room temperature Na-ion secondary battery have received extensive investigations for large-scale energy storage systems (EESs) and smart grids lately due to similar chemistry of “rocking-chair” sodium storage mechanism, lower price and huge abundance. They are considered as an alternative to lithium-ion batteries for large-scale applications, bringing an increasing research interests in materials for sodium-ion batteries. Although there are many obstacles to overcome before the Na-ion battery becomes commercially available, recent research discoveries corroborate that some of the cathode materials for the Na-ion battery have indeed advantages over its Li-ion competitors. Layered oxides are promising cathode materials for sodium ion batteries because of their high theoretical capacities. In this publication, a review of layered oxides (NaxMO2, M = V, Cr, Mn, Fe, Co, Ni, and a mixture of 2 or 3 elements) as a Na-ion battery cathode is presented. O3 and P2 layered sodium transition metal oxides  NaxMO2 are a promising class of cathode materials for Na secondary battery applications. These materials, however, all suffer from capacity decline when the extraction of Na exceeds certain capacity limits. Understanding the causes of this capacity decay is critical to unlocking the potential of these materials for battery applications.  Single layered oxide systems are well characterized not only for their electrochemical performance, but also for their structural transitions during the cycle. Binary oxides systems are investigated in order to address issues regarding low reversible capacity, capacity retention, operating voltage, and structural stability. Some materials already have reached high energy density, which is comparable to that of LiFePO4. On the other hand, the carefully chosen elements in the electrodes also largely determine the cost of SIBs. Therefore, earth abundant-based compounds are ideal candidates for reducing the cost of electrodes. Among all low-cost metal elements, cathodes containing iron, chromium and manganese are the most representative ones. The aim of the article is to present the development of Na layered oxide materials in the past as well as the state of the art today.

https://doi.org/10.33609/0041-6045.85.9.2019.44-57
№5

References

Chou S., Yu Y. Next Generation Batteries: Aim for the Future. Adv. Energy Mater. 2017. 7: 1703223.

Pan H., Hu Y.-S., Chen L. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 2013. 6: 2338.

Slater M. D., Kim D., Lee E., Johnson Ch. S. Sodium-Ion Batteries. Adv. Funct. Mat. 2013. 23: 947.

Bin D., Wang F., Tamirat A. G., Suo L., Wang Y., Wang C., Xia Y. Progress in Aqueous Rechargeable Sodium-Ion Batteries Adv. Energy Mater. 2018. 8: 1703008

Sangtae K., Ma X., Ong S., Ceder G. A. Comparison of destabilization mechanisms of the layered NaxMO2 and LixMO2 compounds upon alkali deintercalation. Physical Chemistry Chemical Physics 2012. 14: 15571.

Yabuuchi N., Kajiyama A., Iwatate J., Nishikawa H., Hitomi S., Okuama R., Usui R., Yamada Y., Komaba S. P2-type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries Nat. Mater. 2012. 11: 512.

Delmas C., Fouassier C., Hagenmuller P. Structural classification and properties of the layered oxides. Physica B+C. 1980. 99: 81.

Kubota K., Yabuuchi N., Yoshida H., Dahbi M., Komaba S. Layered oxides as positive electrode for Na-ion batteries. MRS Bull. 2014. 39: 416.

Mendiboure A., Delmas C., Hagenmuller P. Electrochemical intercalation and deintercalation of NaxMnO2 bronzes. J. Solid State Chem. 1985. 57: 323.

Saadoune I., Maazaz A., M´en´etrier M., Delmas C. On the NaxNi0.6Co0.4O2System: Physical and Electrochemical Studies. J. Solid State Chem. 1996. 122: 111.

Ellis B. L. and Nazar L. F. Sodium and sodium-ion energy storage batteries. Curr. Opin. Solid State Mater. Sci. 2012. 16: 168.

Hamani D., Ati M., Tarascon J.-M., Rozier P. NaxVO2 as possible electrode for Na-ion batteries. Electrochem. Commun. 2011. 13: 938.

Bo S., Li X., Toumar A.J., Ceder G. Layered-to-Rock-Salt Transformation in Desodiated NaxCrO2 (x 0,4) Chem. Mater. 2016. 28: 1419.

Kubota K., Ikeuchi I., Nakayama T., Takei C., Yabuuchi N., Shiiba H., Nakayama M., Komaba S. New Insight into Structural Evolution in Layered NaCrO2 during Electrochemical Sodium Extraction. J. Phys. Chem C. 2015. 119(1): 166.

Xia X. and Dahn J. R. NaCrO2 is a Fundamentally Safe Positive Electrode Material for Sodium-Ion Batteries with Liquid Electrolytes. Electrochem. Solid-State Lett. 2011. 15: A1–A4.

Fukunaga А., Nohira T., Hagiwara R., Numata K., Itani E., Sakai SK. Nitta. Performance validation of sodium-ion batteries using an ionic liquid electrolyte. Journal of Applied Electrochemistry. 2016. 46(4): 487.

Yu Ch., Park J., Jung H., Chung K., Aurbach D., Sun Y., Myung S. NaCrO2 cathode for high-rate sodium-ion batteries. Energy Environ. Sci. 2015. 8: 2019.

Tsuchiya Y. and Yabuuchi N. P2- and P3-Type NaxCrxTi1-XO2 Layered Oxides As Bi-Functional Electrode Materials for Rechargeable Sodium Batteries. ECS Meeting Abstracts 2016. MA2016-02: 768.

Parant J.-P., Olazcuaga R., Devalett M., Fouassier C. and Hagenmuller P. Sur quelques nouvelles phases de formule NaxMnO2 (x ⩽ 1). J. Solid State Chem. 1971. 3: 1.

Li X., Ma X., Su D., Liu L., Chisnell R., Ong S. P., Chen H., Toumar A., Idrobo J.-C., Lei Y., Bai J., Wang F., Lynn J. W., Lee Y. S. and Ceder G. Direct visualization of the Jahn–Teller effect coupled to Na ordering in Na5/8MnO2. Nat. Mater. 2014. 13: 586.

Khan M.A., Han D., Lee G., Kim Y., Kang Y. P2/O3 phase-integrated Na0.7MnO2 cathode materials for sodium-ion rechargeable batteries. Journal of Alloys and Compounds. 2019. 771: 987.

Billaud J., Singh G., Armstrong A. R., Gonzalo E., Roddatis V., Armand C., Rojo T. and Bruce P. G. Na0.67Mn1−xMgxO2 (0 ≤ x ≤ 0.2): a high capacity cathode for sodium-ion batteries. Energy Environ. Sci. 2014. 7: 1387.

Yabuuchi N., Hara R., Kubota K., Paulsen J., Kumakura S. and Komaba S. A new electrode material for rechargeable sodium batteries: P2-type Na2/3[Mg0.28Mn0.72]O2 with anomalously high reversible capacity. J. Mater. Chem. A. 2014. 40: 16851.

Yabuuchi N., Yoshida H. and Komaba S. Crystal Structures and Electrode Performance of Alpha-NaFeO2 for Rechargeable Sodium Batteries. Electrochemistry. 2012. 80: 716.

Zhao W., Tsuchiya Y., Yabuuchi N. Influence of Synthesis Conditions on Electrochemical Properties of P2-Type Na2/3Fe2/3Mn1/3O2 for Rechargeable Na Batteries. Small Methods 2018. 1800032

Zhao J., Xu J., Lee D. H., Dimov N., Meng Y. S., Okada S. Electrochemical and thermal properties of P2-type Na2/3Fe 1/3Mn2/3O2 for Na-ion batteries. J. Power Sources. 2014. 264: 235.

Dose W. M., Sharma N., Pramudita J. C., Kimpton J. A., Gonzalo E., Han M. H., Rojo T. Crystallographic Evolution of P2 Na2/3Fe0.4Mn0.6O2 Electrodes during Electrochemical Cycling.

Chem. Mater. 2016. 28: 6342.

Mortemard de Boisse B., Carlier D., Guignard M., Bourgeois L., Delmas C. P2-NaxMn1/2Fe1/2O2 Phase Used as Positive Electrode in Na Batteries: Structural Changes Induced by the Electrochemical (De)intercalation Process. Inorg. Chem. 2014. 53: 11197.

Shacklette L. W., Jow T. R. and Townsend L. Rechargeable Electrodes from Sodium Cobalt Bronzes. J. Electrochem. Soc. 1988. 135: 2669.

Berthelot R., Carlier D. and Delmas C. Electrochemical investigation of the P2–NaxCoO2 phase diagram. Nat. Mater. 2011. 10: 74.

Vassilaras P., Ma X., Li X. and Ceder G. Electrochemical Properties of Monoclinic NaNiO2.

J. Electrochem. Soc. 2013. 160: A207–A211.

Ding J. J., Zhou Y. N., Sun Q., Yu X. Q., Yang X. Q. and Fu Z. W. Electrochemical properties of P2-phase Na0.74CoO2 compounds as cathode material for rechargeable sodium-ion batteries. Electrochim. Acta. 2013. 87: 388.

Han M. H., Gonzalo E., Casas-Cabanas M. and Rojo T. Structural evolution and electrochemistry of monoclinic NaNiO2 upon the first cycling process. J. Power Sources. 2014. 258: 266.

Komaba S., Yabuuchi N., Nakayama T., Ogata A., Ishikawa T. and Nakai I. Study on the reversible electrode reaction of Na(1-x)Ni(0.5)Mn(0.5)O2 for a rechargeable sodium-ion battery. Inorg. Chem. 2012. 51: 6211.

Wang H., Yang B., Liao X.-Z., Xu J., Yang D., Yang D., He Y.-S. and Ma Z.-F. Electrochemical properties of P2-Na2/3 [Ni1/3Mn2/3] O2 cathode material for sodium ion batteries when cycled in different voltage ranges. Electrochim. Acta. 2013. 113: 200.

Lu Z. and Dahn J. R. In Situ X-Ray Diffraction Study of P 2 ¬ Na2 / 3 [ Ni1 / 3Mn2 / 3 ] O 2. J. Electrochem. Soc. 2001. 148: A1225.

Baker J., Heap R. J., Roche N., Tan C., Sayers R. and Liu Y. High Performance Na-ion Batteries Based on Novel O3 Layered Oxide Cathode Materials. International Meeting on Lithium Batteries, Como. Italy. -2014.

Didier C., Guignard M., Denage C., Szajwaj O., Ito S., Saadoune I., Darriet J. and Delmas C. Electrochemical Na-deintercalation from NaVO2. Electrochem. Solid-State Lett. 2011. 14: A75–A78.

Komaba S., Takei C., Nakayama T., Ogata A. and Yabuuchi N. Electrochemical intercalation activity of layered NaCrO2 vs. LiCoO2. Electrochem. Commun. 2010. 12: 355.

Downloads

Download data is not yet available.