SYNTHESIS, X-RAY CRYSTAL STRUCTURE, SPECTROSCOPIC CHARACTERIZATION AND HIRSHFELD SURFACE ANALYSIS OF DICHLORO-BIS(3,5-DIMETHYL-4-AMINO-1H-PYRAZOLE) COBALT(II)
№4

Keywords

pyrazole, cobalt complexes, crystal structure, X-ray crystallography, Hirshfeld surface analysis.

How to Cite

Davydenko , Y., Pavlenko, V., Fritsky, I., & Vynohradov , O. (2022). SYNTHESIS, X-RAY CRYSTAL STRUCTURE, SPECTROSCOPIC CHARACTERIZATION AND HIRSHFELD SURFACE ANALYSIS OF DICHLORO-BIS(3,5-DIMETHYL-4-AMINO-1H-PYRAZOLE) COBALT(II) . Ukrainian Chemistry Journal, 88(6), 127-136. https://doi.org/10.33609/2708-129X.88.06.2022.127-136

Abstract

The synthesis and characterization of mononuclear Co(II) complex based on 3,5-dimethyl-4-amino-1H-pyrazole are reported. IR and UV/Vis spectroscopy characterization of the complex are described. The synthesis, results of IR, NMR spectroscopy and elemental analysis of 3,5-dimethyl-4-amino-1H-pyrazole are also reported. X-ray analysis of [Co(C5H9N3)2Cl2] complex reveals that the cobalt atom has a tetrahedral coordination environment formed by two nitrogen atoms belonging to the two 3,5-dimethyl-4-amino-1H-pyrazole ligands [Co1–N1 = 2.005(3) and Co1–N5 = 2.006(3)Å] and two chlorine atoms [Co1–Cl2 = 2.2400(11) and Co1–Cl1 2.2863(12) Å]. In the crystal structure the molecules are linked through intermolecular (N–H···N, N–H···Cl) and intramolecular non-classical (С–H···Cl) hydrogen bonds. Hirshfeld surface analysis of the intermolecular contacts reveals that the most important contributions for the crystal packing are from H···H (47.1%) and H···Cl/Cl···H (28.5%) contacts.

https://doi.org/10.33609/2708-129X.88.06.2022.127-136
№4

References

Krämer R. Bioinorganic models for the catalytic cooperation of metal ions and functional groups in nuclease and peptidase enzymes. Coord. Chem. Rev. 1999. 182(1): 243–261.

https://doi.org/10.1016/s0010-8545(98)00235-5

Kahn O. Molecular Magnetism. VCH Publi­shers New York. 1993.

Klingele J., Dechert S., Meyer F. Polynuclear transition metal complexes of metal⋯metal-bridging compartmental pyrazolate ligands. Coord. Chem. Rev. 2009. 253(21–22): 2698–2741. https://doi:10.1016/j.ccr.2009.03.026

Mezei G., Rivera-Carrillo M., Raptis R.G. Effect of copper-substitution on the structure and nuclearity of Cu(II)-pyrazolates: from trinuclear to tetra-, hexa- and polynuclear complexes. Inorg.Chim.Acta 2004. 357: 3721–3732.

https://doi:10.1016/j.ica.2004.05.022

Davydenko Y.M., Fritsky I.O., Pavlenko V.O., Meyer F., Dechert S. Bis(acetato- 2O,O’)bis(3,5-dimethyl-1H-pyrazole- N2)copper(II). ActaCrystallogr. 2009. Sect. E 65: m691–m692. https://doi:10.1107/S1600536809019400

Casarin M., Corvaja C., Di Nicola, Falcomer C., Franco L.D., Monari M., Pandolfo L., Pe­tti­nari C., Piccinelli F. One-dimensional and two-dimensional coordination polymers from self-assembling of trinuclear triangular Cu(II) secondary building units. Inorg. Chem. 2005. 44: 6265–6276. https://doi.org/10.1021/ic050678l

Monica G.L., Ardizzoia G.A. The Role of the Pyrazolate Ligand in Building Polynuclear Transition Metal Systems. Prog. Inorg. Chem. 2007. 151–238.

https://doi.org/10.1002/9780470166475.ch3

Mezei G., Zaleski C.M., Pecoraro V.L. Structural and Functional Evolution of Metallacrowns. Chem. Rev. 2007. 107(11): 4933–5003.

https://doi:10.1021/cr078200h

Pandolfo L., Pettinari C. Trinuclear copper (II) pyrazolate compounds: a long story of serendipitous discoveries and rational design. Cryst. Eng. Comm. 2017. 19: 1701.

https://doi.org/10.1039/C7CE00009J

Haralampos М.N., Chakraborty I., Raptis R.G. Tri-, deca- and dodecanuclear Co(III)–pyrazolatemetallacycles. Chem. Com. 2010. 46(15): 2569–2571. https://doi:10.1039/B920486E.

Karmakar A., Bania K., Baruah A.M., Baruah J.B. Role of nitro-substituent in pseudo-polymorphism and in synthesis of metal carboxylato complexes of copper, zinc and manganese. Inorg.Chem.Com. 2007. 10(8): 959–964.

https://doi.org/10.1016/j.inoche.2007.04.026

Giles I.D., DePriest J.C., Deschamps J.R. Effect of substitution and the counterion on the structural and spectroscopic properties of CuIIcomplexes of methylated pyrazoles. J. Coord. Chem. 2015. 68(20): 3611–3635.

https://doi:10.1080/00958972.2015.1077952

Takahashi P.M., Melo L.P., Frem R.C.G., Netto A.V.G., Mauro A.E., Santos R.H.A., Ferreira J.G. Self-assembly of metallosupramolecules directed by (N–H)2⋯SCN-M (M=Co, Ni), C–H⋯π and π–π synthons. J. Mol. Struct. 2006. 783(1–3): 161–167.

https://doi:10.1016/j.molstruc.2005.08.031

Khan S.A., Noor A.K., Rhett S.H., Shah A., Khan E. Syntheses, molecular structure, and electrochemical investigations of cobalt(II), copper(II), palladium(II), and zinc(II) complexes with 3-methylpyrazole. J. Coord. Chem. 2014. 67(14): 2425–2434.

https://doi:10.1080/00958972.2014.938066

Xing-Wei C., Zhao Y., Guang-Fan Han. Di­chlo­ridobis(3,5-dimethyl-1H-pyrazol-4-­ami­ne-­jN2)cobalt(II). ActaCrystallogr. 2008. Sect. E 64: m1012.

https://doi:10.1107/S1600536808020461

Otwinowski Z., Minor W. Processing of X-ray diffraction data collected in oscillation mode, in: Carter CWJ, Sweet RM (Eds.), Methods in Enzymology, Macromolecular Crystallography. Academic Press 1997. Part A. 276: 307–326.

Altomare А., Burla M.C., Camalli M., Casca­rano G.L., Giacovazzo C., Guagliardi A., Moliterni A.G.G., Polidori G., Spagna R. J. Appl. Cryst. 1999. 32:115.

Sheldrick G.M., SHELXL-97, Program for the Refinement of Crystal Structures, University of Göttingen 1997.

Tarasevich B.N. IK spektryosnovnykhklassovorganicheskikhsoyedineniy. Moscow, MGU, 2012 (in Russian).

Liver E. Electronic spectra of inorganic compounds. Moscow. Mir (in Russian). 1987.

Agre V.M., Krol I.A., Trunov V.K. Crystal and molecular structure of dichloro-bis-(1H-3,5-diethyl-4-methylpyrazole-N2)cobalt (II). Koord. Khim. 1978. 4(10): 1603–1607.

Verweij P.D., Rietmeijer F.J., De Graaff R.A.G., Erdonmez A., Reedijk. J. Inorg. Chim. Acta. 1989. 163: 223.

Spackman P.R., Turner M.J., McKinnon J.J., Wolff S.K., Grimwood D.J., Jayatilaka D., Spackman M.A. CrystalExplorer: a program for Hirsh­feld surface analysis, visualization and qu­antitative analysis of molecular crystals. J. Appl. Cryst. 2021. 54(3): 1006–1011.

Downloads

Download data is not yet available.