PECULIARITIES OF COMPLEX FORMATION IN THE SULFOBUTYL ETHER-β-CYCLODEXTRIN - IONIC LIQUID SYSTEM
№4

Keywords

ionic liquid, sulfobutyl ether-­β-cyclodextrin sodium salt, inclusion complex.

How to Cite

Kobrina, L., Boyko, V., Hliieva, H., Riabov, S., Rogalsky, S., & Yanova, K. (2022). PECULIARITIES OF COMPLEX FORMATION IN THE SULFOBUTYL ETHER-β-CYCLODEXTRIN - IONIC LIQUID SYSTEM. Ukrainian Chemistry Journal, 88(1), 49-66. https://doi.org/10.33609/2708-129X.88.01.2022.49-66

Abstract

The inclusion complexation of sulfobutyl ether-β-cyclodextrin sodium salt (SBECD) - ionic liquid (IL) has been investigated by a series of appropriate methods. The stability constant of the complex of SBECD-IL (K = 72.4 m-1) was determined by the method of Higuchi and Connors. An increase in the surface tension of solutions with different SBECD’s content was recorded by using the method of Wilhelm's plate, which could serve as an additional evidence of the formation of inclusion complex between SBECD and IL. Analysis of the TGA results provided for the initial IL and SBECD, their mechanical mixture and the complex elaborated allows us to conclude that the "guest-host" type complexation is emerged. Differential scanning calorimetry (DSC) data also confirmed the formation of inclusion complex between SBECD and IL. While the guest molecule is incorporated into cyclodextrin cavity, its thermal properties are changed. So, the loss of physically bonded water in the complex is equal to 5% by weight, indicating the IL’s molecule being located in the SBECD’s hydrophobic cavity. The thermogram of inclusion complex demonstrates just one endothermic peak at 74 oC. The complex is formed by entering the long alkyl chain of ionic liquid into the hydrophobic cavity of SBECD. Since the bonds of sulfo groups and β-СD’s glucopyran cycles become weaker, this may testify an additional interactions between SBECD and IL. With  thermograviometric analysis (TGA) of the original IR and SB-β-CD, their mechanical mixture and the test compound fixed the formation of not a classical complex, but an associated complex of inclusion type "guest-host", which is formed by entering a long alkyl chain IR in the hydrophobic cavity SB-β-CD.

https://doi.org/10.33609/2708-129X.88.01.2022.49-66
№4

References

Dias A., Marceneiro S., Braga M., Coelho J., Ferreira A., Simões P., Veiga H., Tomé L., Marrucho I., Esperança J., Matias A., Duarte C., Rebelo L., De Sousa H. Phosphonium-based ionic liquids as modifiers for biomedical grade poly(vinyl chloride). Acta Biomater. 2012, 3: 1366–1379.

Docherty K., Kulpa C. Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids. Green Chem. 2005, 7: 185–189.

Carson L., Chau P., Earle M., Gilea M., Gilmore B., Gorman S., McCann M., Seddon K. Antibiofilm activities of 1-alkyl-3-methy­limi­dazolium chloride ionic liquids. Green Chem. 2009, 11: 492–497.

Coleman D., Špulàk M., Garcia M. T., Gathergood N. Antimicrobial toxicity studies of ionic liquids leading to a ‘hit’ MRSA selective antibacterial imidazolium salt. Green Chem. 2012, 14: 1350–1356.

Hodyna D.M., Metelytsia L.A., Parkhomenko V.I., Rogalsky S.P. Synthesis and antimicrobial activity of water-insoluble ionic liquids based on 1-alkyl-3-methylimidazolium cation. Ukrainica Bioorganica Acta. 2014, 1: 18–23 (in Ukrainian).

Yifeng He, Qingde Chen, Chao Xu, Jingjing Zhang, and Xinghai Shen Interaction between Ionic Liquids and β-Cyclodextrin: A Discussion of Association Pattern. J. Phys. Chem. B. 2009, 113: 231–238.

Poverhnostnye javlenija i poverhnostno-aktivnye veshhestva / Pod. red. A.A. Abramzona, E.D. Shhukina. L.: Himija, 1984. 392 (in Russian).

Fajnerman A.E., Lipatov Ju.S., Kulik V.M. [i dr.] Prostoj metod opredelenija poverhnostnogo natjazhenija i kraevyh uglov smachivanija gidkostej. Kolloid. Zhurnal. 1970, 32: 620–623 (in Russian).

Kratkij spravochnik po himii / Pod red. O.D. Kurilenko. Kiev: Naukova dumka, 1965. 835 (in Russian).

Smirnova N.A., Safonova E.A. Ionic liquids as surfactants. Russian Journal of Physical Chemi­stry A. 2010, 84 (10): 1857–1867 (in Russian).

Panova I.G., et al. Structural arrangement of inclusion complexes of β-cyclodextrin with poly(propylene oxide). Polymer Science. Series A. 2001; 43(7): 1228–1236 (іn Russian).

Bejnon Dzh. Mas-spektrometrija i eeprimenenie v organicheskojhimii. Per. sangl. M.: Mir, 1964. 701 (in Russian).

Hmel'nickij R.A., Lukashenko I.M., Brodskij E.S. Piroliticheskaja mass-spektro-metrija vysokomolekuljarnyh soedinenij. M.: Himija, 1980. 280 (in Russian).

Ryabov S.V., Boyko V.V., Bortnitsky V.I., Dmitrieva T.V., Ostashko V.V., Kercha Yu.Yu. Thermal mass spectrometry investigation of the inclusion complexes between the active substance ‘nimodipine’ and β-cyclodextrin. Journal of Organic and Pharmaceutical Chemistry. 2011, 9 (1):76–80 (in Ukrainian).

Riabov S.V., Boyko V.V., Bortnytsky V.I., Dmytrieva T.V., Babych I.V., Kercha Yu.Yu. Mass-spectrometry study of β-cyclodextrin inclusion complex with albumin. Polymer Journal. 2012, 34 (3): 283–286 (in Ukrainian).

Riabov S.V., Boyko V.V., Bortnitskiy V.I., Dmitrieva T.V., Kobrina L.V., Ostashko V.V., Charnetskaya A.G., Kercha Yu.Yu. Thermal mass-spectrometry investigation of the inclusion complexes of β-cyclodextrin with 4-nitrophenol and 1, 5-dichloropentane. Polymer Journal. 2009, 31 (4): 294–298 (in Ukrainian).

Riabov S.V., Boyko V.V., Bortnitskiy V.I., Dmitrieva T.V., Kobrina L.V., Kercha Yu.Yu. Mass spectrometric studies obtained in the aqueous medium of the inclusion of β-cyclodextrin derivatives with organic compounds. Ukrainian Chemistry Journal. 2009, 75 (11): 58–63 (in Ukrainian).

Riabov S.V., Boyko V.V., Bortnitskiy V.I., Dmitrieva T.V., Ostashko V.V., Kercha Yu.Yu. Thermal mass-spectrometry investigation of the inclusion complexes of β-cyclodextrins with Phenoxathiin. Polymer Journal. 2010, 32 (2): 105–110 (in Ukrainian).

Riabov S. V., Boyko V. V., Bortnitskiy V. I., Dmitrieva T. V., Ostashko V. V., Babych I. V., Kercha Yu. Yu. Influence of substituent groups in β-cyclodextrin on the stability of its inclusion complexes with phenoxathiin. Reports of the National Academy of Sciences of Ukraine. 2011, 5:145–149 (in Ukrainian).

Babych I. V., Riabov S. V., Boyko V. V., Dmitrieva T. V., Bortnitskiy V. I., Kozlov A. V., Kercha Yu. Yu. Inclusion complexes of cyclodextrins with bovine serum albumin. Reports of the National Academy of Sciences of Ukraine. 2013, 1: 118–122 (in Ukrainian).

Kobrina L.V., Boyko V.V., Riabov S.V., Sinelnikov S.I., Bortnitskiy V.I., Bandurina Daria, Moskalenko Oleg. Investigation of the inclusion complex of carboxymethylated β-Cyclodextrin with Phenoxatiin. Polymer Journal. 2019, 41 (3): 107–110 (in Ukrainian).

Boyko V.V., Kobrina L., Bortnitsky V.I., Bandurina D., Riabov S. Study of carboxyme­thylated-β-cyclodextrin’ inclusion complexes with bifonazole fnd clotrimazole by thermal mass spectrometry. Polymer Journal. 2020, 42 (3): 226–235 (in Ukrainian).

Sidel'nikov V.N., Gur'janova L.V., Utkin V.A., Malahov V.V., Kol'chin A.M. Katalog sokrashhennyh mass-spektrov. Novosibirsk: Nauka, 1981. 187 (in Russian).

Downloads

Download data is not yet available.