SPIN-CROSSOVER IRON(II) COORDINATION COM­POUNDS: FABRICATION OF FUNCTIONAL MATERIALS AND THEIR INTEGRATION INTO MICRO- AND NANOCONSTRUCTIONS
№1

Keywords

spin crossover, Fe(II) coordination compounds, luminescent devices, nano­electronic devices, micromechanical constructions.

How to Cite

Hiiuk, V., Suleimanov, I., & Fritsky, I. (2021). SPIN-CROSSOVER IRON(II) COORDINATION COM­POUNDS: FABRICATION OF FUNCTIONAL MATERIALS AND THEIR INTEGRATION INTO MICRO- AND NANOCONSTRUCTIONS. Ukrainian Chemistry Journal, 87(11), 3-20. https://doi.org/10.33609/2708-129X.87.11.2021.3-20

Abstract

Development of micro- and nanosized spin-crossover (SCO) materials has become an important research direction within the past decade. Such an interest is associated with high perceptive of practical application of these materials in nanoelectronic devices. Therefore, researches working in the field of SCO put considerable efforts to obtain SCO complexes in various functional forms, such as nanoparticles, thin films, etc. Fabrication of these materials is realized through different chemical and/or lithographical approaches, which allow to adjust size, shape and even organization of nanoobjects.

In this review theoretical background of SCO phenomenon is described, additionally different classes of coordination compounds exhibiting spin crossover are covered. It is demonstrated that electric field, temperature and light irradiation can be effectively used for switching and control of spin state in nanosized SCO systems. Cooperative SCO with transition close to room temperature, wide hysteresis loop and distinct thermochromic effect is most often observed for Fe(II) coordination complexes. Therefore, Fe(II) SCO compounds form one of the most perspective classes of compounds for obtaining functional materials. It is shown that integration of Fe(II) compounds into micro- and nanohybrid devi­ces allows to combine unique functional pro­perties in one material due to synergy between SCO and physical properties (luminescent, electrical, etc.) of the other component. As a result, SCO compounds are interesting not only from the fundamental point of view, but also from practical, thanks to the possibility of integration of SCO Fe(II) complexes as active materials in devices of different configurations.

It is expected that obtaining of new Fe(II) coordination polymers with unique SCO cha­racteristics will favor the development of new functional materials and devices on their basis in the nearest future.

https://doi.org/10.33609/2708-129X.87.11.2021.3-20
№1

References

Cambi L., Szegö L. Über die magnetischeSusceptibilität der komplexenVerbindungen. Be­richte der Dtsch. Chem. Gesellschaft(A B Ser). 1931. 64 (10): 2591–2598.

Pauling L., Coryell C. D. The Magnetic Properties and Structure of Hemoglobin, Oxyhemoglobin and Carbonmonoxyhemoglobin. Proc. Natl. Acad. Sci. 1936. 22 (4): 210–216.

Griffith J. S., A P. R. S. L. On the magnetic pro­perties of some haemoglobin complexes. Proc. R. Soc. London. Ser. A. Math. Phys. Sci. 1956. 235 (1200): 23–36.

Ballhausen C. J., Liehr A. D. Some Comments on the Anomalous Magnetic Behavior of Certain Ni(II) Complexes. J. Am. Chem. Soc. 1959. 81 (3): 538–542.

Robinson M. A., Curry J. D., Busch D. H. Complexes Derived from Strong Field Ligands. XVII. Electronic Spectra of Octahedral Ni­ckel(II) Complexes with Ligands of the α-Diimine and Closely Related Classes. Inorg. Chem. 1963. 2 (6): 1178–1181.

Figgins P. E., Busch D. H. Complexes of Iron(II), Cobalt(II) and Nickel(II) with Biacetyl-bis-methylimine, 2-Pyridinal-methylimine and 2,6-Pyridindial-bis-methylimine. J. Am. Chem. Soc. 1960. 82 (4): 820–824.

Stoufer R. C., Busch D. H., Hadley W. B. Unusual magnetic properties of some six-coördinate cobalt(II) complexes1 – electronic isomers. J. Am. Chem. Soc. 1961. 83 (17): 3732–3734.

Venkataramani S., Jana U., Dommaschk M., Sönnichsen F. D., Tuczek F., Herges R. Magnetic Bistability of Molecules in Homogeneous Solution at Room Temperature. Science (80). 2011. 331 (6016): 445–448.

Brooker S. Spin crossover with thermal hysteresis: practicalities and lessons learnt. Chem. Soc. Rev. 2015. 44 (10): 2880–2892.

Weber B., Bauer W., Obel J. An Iron(II) Spin-Crossover Complex with a 70 K Wide Thermal Hysteresis Loop. Angew. Chem. Int. Ed. 2008. 47 (52): 10098–10101.

Hayami S., Gu Z., Yoshiki H., Fujishima A., Sato O. Iron(III) Spin-Crossover Compounds with a Wide Apparent Thermal Hysteresis around Room Temperature. J. Am. Chem. Soc. 2001. 123 (47): 11644–11650.

Garcia Y., van Koningsbruggen P. J., Codjovi E., Lapouyade R., Kahn O., Rabardel L. Non-classical FeII spin-crossover behaviour leading to an unprecedented extremely large apparent thermal hysteresis of 270 K: application for displays. J. Mater. Chem. 1997. 7 (6): 857–858.

Hiiuk V. M., Shova S., Rotaru A., Ksenofontov V., Fritsky I. O., Gural’skiy I. A. Room temperature hysteretic spin crossover in a new cyanoheterometallic framework. Chem. Commun. 2019. 55 (23): 3359–3362.

Kucheriv O. I., Fritsky I. O., Gural’skiy I. A. Spin crossover in FeIIcyanometallic frameworks. InorganicaChim. Acta. 2021. 521: 120303.

Muñoz M. C., Real J. A. Thermo-, piezo-, photo- and chemo-switchable spin crossover iron(II)-metallocyanate based coordination polymers. Coord. Chem. Rev. 2011. 255 (17–18): 2068–2093.

Gütlich P., Garcia Y., Goodwin H. A. Spin crossover phenomena in Fe(II) complexes. Chem. Soc. Rev. 2000. 29 (6): 419–427.

Halcrow М. А. Spin-Crossover Materials: Pro­perties and Applications. Oxford: John Wiley & Sons, Ltd., 2013. 568 р.

Molnár G., Salmon L., Nicolazzi W., Terki F., Bousseksou A. Emerging properties and applications of spin crossover nanomaterials. J. Mater. Chem. C. 2014. 2 (8): 1360–1366.

Létard J.-F., Guionneau P., Goux-Capes L. Towards Spin Crossover Applications. Spin Crossover in Transition Metal Compounds III; Springer-Verlag: Berlin/Heidelberg, 2004. Vol. 1. P. 221–249.

Kahn O., Martinez C. J. Spin-Transition Polymers: From Molecular Materials Toward Me­mory Devices. Science (80-. ). 1998. 279 (5347): 44–48.

Enríquez-Cabrera A., Ridier K., Salmon L., Routaboul L., Bousseksou A. Complete and Versatile Post-Synthetic Modification on Iron‐Triazole Spin Crossover Complexes: A Relevant Material Elaboration Method. Eur. J. Inorg. Chem. 2021. 2021 (21): 2000–2016.

Roubeau O. Triazole-Based One-Dimensional Spin-Crossover Coordination Polymers. Chem. Eur. J. 2012. 18 (48): 15230–15244.

Aromí G., Barrios L. A., Roubeau O., Gamez P. Triazoles and tetrazoles: Prime ligands to ge­nerate remarkable coordination materials. Coord. Chem. Rev. 2011. 255 (5–6): 485–546.

Roubeau O., Alcazar Gomez J. M., Balskus E., Kolnaar J. J. A., Haasnoot J. G., Reedijk J. Spin-transition behaviour in chains of FeIIbridged by 4-substituted 1,2,4-triazoles carrying alkyl tails. New J. Chem. 2001. 25 (1): 144–150.

Lavrenova L. G., Yudina N. G., Ikorskii V. N., Varnek V. A., Oglezneva I. M., Larionov S. V. Spin-crossover and thermochromism in complexes of iron(II) iodide and thiocyanate with 4-amino-1,2,4-triazole. Polyhedron. 1995. 14 (10): 1333–1337.

Sirenko V. Y., Kucheriv O. I., Rotaru A., Fritsky I. O., Gural’skiy I. A. Direct Synthesis of Spin‐Crossover Complexes: An Unexpectedly Revealed New Iron-Triazolic Structure. Eur. J. Inorg. Chem. 2020. 2020 (48): 4523–4531.

Dreyer B., Natke D., Klimke S., Baskas S., Sindelar R., Klingelhöfer G., Renz F. Implementation of spin crossover compounds into electrospun nanofibers. Hyperfine Interact. 2018. 239 (1): 8.

Lapresta-Fernández A., Cuéllar M. P., Herrera J. M., Salinas-Castillo A., Pegalajar M. D. C., Titos-Padilla S., Colacio E., Capitán-Vallvey L. F. Particle tuning and modulation of the magnetic/colour synergy in Fe(II) spin crossover-polymer nanocomposites in a thermochromic sensor array. J. Mater. Chem. C. 2014. 2 (35): 7292–7303.

Lapresta-Fernández A., Titos-Padilla S., Herrera J. M., Salinas-Castillo A., Colacio E., Capitán-Vallvey L. F. Photographing the sy­nergy between magnetic and colour properties in spin crossover material [Fe(NH2Trz)3](BF4)2: a temperature sensor perspective. Chem. Commun. 2013. 49 (3): 288–290.

Lavrenova L. G., Shakirova O. G., Ikorskii V. N., Varnek V. A., Sheludyakova L. A., Larionov S. V. 1A1⇄5T 2 Spin Transition in New Thermochromic Iron(II) Complexes with 1,2,4-Triazole and 4-Amino-1,2,4-Triazole. Russ. J.

Coord. Chem. 2003. 29 (1): 22–27.

van Koningsbruggen P. J., Garcia Y., Codjovi E., Lapouyade R., Kahn O., Fournès L., Rabardel L. Non-classical FeII spin-crossover behaviour in polymeric iron(II) compounds of formula [Fe(NH2trz)3]X2xH2O (NH2trz=4-amino-1,2,4-triazole; X=derivatives of naphthalene sulfonate). J. Mater. Chem. 1997. 7 (10): 2069–2075.

Seredyuk M., Gaspar A. B., Ksenofontov V., Verdaguer M., Villain F., Gütlich P. Thermal- and Light-Induced Spin Crossover in Novel 2D Fe(II) Metalorganic Frameworks

{Fe(4-PhPy)2[MII(CN)x]y}•sH2O: Spectroscopic, Struc­tural, and Magnetic Studies. Inorg. Chem. 2009. 48 (13): 6130–6141.

Muñoz-Lara F. J., Gaspar A. B., Aravena D., Ruiz E., Muñoz M. C., Ohba M., Ohtani R., Kitagawa S., Real J. A. Enhanced bistability by guest inclusion in Fe(II) spin crossover porous coordination polymers. Chem. Commun. 2012. 48 (39): 4686.

Rajadurai C., Schramm F., Brink S., Fuhr O., Ghafari M., Kruk R., Ruben M. Spin Transition in a Chainlike Supramolecular Iron(II) Complex. Inorg. Chem. 2006. 45 (25): 10019–10021.

Niel V., Martinez-Agudo J. M., Muñoz M. C., Gaspar A. B., Real J. A. Cooperative Spin Cross­over Behavior in Cyanide-Bridged Fe(II)−M(II) Bimetallic 3D Hofmann-like Networks (M = Ni, Pd, and Pt). Inorg. Chem. 2001. 40 (16): 3838–3839.

Gural’skiy I. A., Shylin S. I., Golub B. O., Ksenofontov V., Fritsky I. O., Tremel W. High temperature spin crossover in [Fe(pyrazine){Ag(CN)2}2] and its solvate. New J. Chem. 2016. 40 (11): 9012–9016.

Gural’skiy I. A., Golub B. O., Shylin S. I., Ksenofontov V., Shepherd H. J., Raithby P. R., Tremel W., Fritsky I. O. Cooperative High-Temperature Spin Crossover Accompanied by a Highly Anisotropic Structural Distortion. Eur. J. Inorg. Chem. 2016. 2016 (19): 3191–3195.

Klein Y. M., Sciortino N. F., Ragon F, House­croft C. E., Kepert C. J., Neville S. M. Spin crossover intermediate plateau stabilization in a flexible 2-D Hofmann-type coordination polymer. Chem. Commun. 2014. 50 (29): 3838–3840.

Alvarado-Alvarado D., González-Estefan J. H., Flores J. G., Álvarez J. R., Aguilar-Pliego J., Islas-Jácome A., Chastanet G., González-Zamora E., Lara-García H. A., Alcántar-Vázquez B., Gonidec M. Ibarra I. A. Water Adsorption Properties of Fe(pz)[Pt(CN)4] and the Capture of CO2 and CO. Organometallics. 2020. 39 (7): 949–955.

Polyzou C. D., Lalioti N., Psycharis V., Tangoulis V. Guest induced hysteretic tristability in 3D pillared Hofmann-type microporous me­tal–organic frameworks. New J. Chem. 2017. 41 (21): 12384–12387.

Aravena D., Castillo Z. A., Muñoz M. C., Gas­par A. B., Yoneda K., Ohtani R., Mishima A.,

Kitagawa S., Ohba M., Real J. A., Ruiz E. Guest Modulation of Spin-Crossover Transition Temperature in a Porous Iron(II) Me­tal-Organic Framework: Experimental and Periodic DFT Studies. Chem. Eur. J. 2014. 20 (40): 12864–12873.

Arcís-Castillo Z., Muñoz-Lara F. J., Muñoz M. C., Aravena D., Gaspar A. B., Sánchez-Royo J. F., Ruiz E., Ohba M., Matsuda R., Kitagawa S., Real J. A. Reversible Chemisorption of Sulfur Di­oxide in a Spin Crossover Porous Coordination Polymer. Inorg. Chem. 2013. 52 (21): 12777–12783.

Ohtani R., Yoneda K., Furukawa S., Horike N.,

Kitagawa S., Gaspar A. B., Muñoz M. C., Rea J. A., Ohba M. Precise Control and Consecutive Modulation of Spin Transition Temperature Using Chemical Migration in Porous Coordination Polymers. J. Am. Chem. Soc. 2011. 133 (22): 8600–8605.

Ohba M., Yoneda K., Agustí G., Muñoz M. C., Gaspar A. B., Real J.-A. A., Yamasaki M., Ando H., Nakao Y., Sakaki S., Kitagawa S. Bidirectional Chemo-Switching of Spin State in a Microporous Framework. Angew. Chem. Int. Ed. 2009. 48 (26): 4767–4771.

Southon P. D., Liu L., Fellows E. A., Price D. J., Halder G. J., Chapman K. W., Moubaraki B., Murray K. S., Létard J.-F., Kepert C. J. Dynamic Interplay between Spin-Crossover and Host–Guest Function in a Nanoporous Metal–Organic Framework Material. J. Am. Chem. Soc. 2009. 131 (31): 10998–11009.

Agustí G., Ohtani R., Yoneda K., Gaspar A. B., Ohba M., Sánchez-Royo J. F., Muñoz M. C., Ki­tagawa S., Real J. A. Oxidative Addition of Halo­gens on Open Metal Sites in a Micropo­rous Spin-Crossover Coordination Polymer. Angew. Chem. Int. Ed. 2009. 48 (47): 8944–8947.

Piñeiro-López L., Seredyuk M., Muñoz M. C.,

Real J. A. Effect of Guest Molecules on Spin Transition Temperature in Loaded Hofmann-Like Clathrates with Improved Poro­sity. Eur. J. Inorg. Chem. 2020. 2020 (9): 764–769.

Piñeiro-López L., Valverde-Muñoz F. J., Sere­dyuk M., Muñoz M. C., Haukka M., Real J. A.

Guest Induced Strong Cooperative One- and Two-Step Spin Transitions in Highly Porous Iron(II) Hofmann-Type Metal–Orga­nic Frameworks. Inorg. Chem. 2017. 56 (12): 7038–7047.

Piñeiro-López L., Seredyuk M., Muñoz M. C., Real J. A. Two- and one-step cooperative spin transitions in Hofmann-like clathrates with enhanced loading capacity. Chem. Commun. 2014. 50 (15): 1833–1835.

Bartual-Murgui C., Akou A., Shepherd H. J., Molnár G., Real J. A., Salmon L., Bousseksou A.

Tunable spin-crossover behavior of the Hofmann-like network {Fe(bpac)[Pt(CN)4]} through host-guest chemistry. Chem. Eur. J. 2013. 19 (44): 15036–15043.

Bartual-Murgui C., Salmon L., Akou A., Ortega-Villar N. A., Shepherd H. J., Muñoz M. C., Molnár G., Real J. A., Bousseksou A. Synergetic effect of host-guest chemistry and spin crossover in 3D Hofmann-like metal-organic frameworks [Fe(bpac)M(CN)4] (M=Pt, Pd, Ni). Chem. Eur. J. 2012. 18 (2): 507–516.

Bartual-Murgui C., Ortega-Villar N. A., She­pherd H. J., Muñoz M. C., Salmon L., Molnár G., Bousseksou A., Real J. A. Enhanced porosity in a new 3D Hofmann-like network exhibiting humidity sensitive cooperative spin transitions at room temperature. J. Mater. Chem. 2011. 21 (20): 7217.

Agustí G., Cobo S., Gaspar A. B., Molnár G., Moussa N. O., Szilágyi P. Á., Pálfi V., Vieu C., Carmen Muñoz M., Real J. A., Bousseksou A. Thermal and Light-Induced Spin Crossover Phenomena in New 3D Hofmann-Like Microporous Metalorganic Frameworks Produced As Bulk Materials and Nanopatterned Thin Films. Chem. Mater. 2008. 20 (21): 6721–6732.

Salmon L., Catala L. Spin-crossover nanoparticles and nanocomposite materials. ComptesRendusChim. 2018. 21 (12): 1230–1269.

Shepherd H. J., Quintero C. M., MolnárG.,Salmon L., Bousseksou A. Luminescent Spin-­Crossover Materials. Spin-Crossover Materials; John Wiley & Sons Ltd: Oxford, UK, 2013. P. 347–373.

Salmon L., Molnár G., Zitouni D., Quintero C.,Bergaud C., Micheau J.-C., Bousseksou A.

A novel approach for fluorescent thermometry and thermal imaging purposes using spin crossover nanoparticles. J. Mater. Chem. 2010. 20 (26): 5499.

Quintero C. M., Gural’skiy I. A., Salmon L., Molnár G., Bergaud C., Bousseksou A. Soft lithographic patterning of spin crossover complexes. Part 1: fluorescent detection of the spin transition in single nano-objects. J. Mater. Chem. 2012. 22 (9): 3745.

Gural’skiy I. A., Quintero C. M., Abdul-Kader K., Lopes M., Bartual-Murgui C., Salmon L., Zhao P., Molnár G., Astruc D., Bousseksou A. Detection of molecular spin-state changes in ultrathin films by photonic methods. J. Nanophotonics. 2012. 6 (1): 063517.

González-Prieto R., Fleury B., Schramm F., Zoppellaro G., Chandrasekar R., Fuhr O., Le­bedkin S., Kappes M., Ruben M. Tuning the spin-transition properties of pyrene-decorated 2,6-bispyrazolylpyridine based Fe(II) complexes. Dalton Trans. 2011. 40 (29): 7564.

Santoro A., Kershaw Cook L. J., Kulmaczewski R., Barrett S. A., Cespedes O., Halcrow M. A. Iron(II) Complexes of Tridentate Indazolylpyridine Ligands: Enhanced Spin-Crossover Hysteresis and Ligand-Based Fluorescence. Inorg. Chem. 2015. 54 (2): 682–693.

Matsuda M., Isozaki H., Tajima H. Reproducible on–off switching of the light emission from the electroluminescent device containing a spin crossover complex. Thin Solid Films. 2008. 517 (4): 1465–1467.

Matsuda M., Kiyoshima K., Uchida R., Kino­shita N., Tajima H. Characteristics of organic light-emitting devices consisting of dye-doped spin crossover complex films. Thin Solid Films. 2013. 531: 451–453.

Zhang X., Palamarciuc T., Létard J.-F., Rosa P., Lozada E. V., Torres F., Rosa L. G., Doudin B., Dowben P. A. The spin state of a molecular adsorbate driven by the ferroelectric substrate polarization. Chem. Commun. 2014. 50 (18): 2255.

Prins F., Monrabal-Capilla M., Osorio E. A., Coronado E., van der Zant H. S. J. Room-Temperature Electrical Addressing of a Bistable Spin-Crossover Molecular System. Adv. Mater. 2011. 23 (13): 1545–1549.

Konstantinov N., Tauzin A., Noumbé U. N., Dragoe D., Kundys B., Majjad H., Brosseau A., Lenertz M., Singh A., Berciaud S., Boillot M.-L.,Doudin B., Mallah T., Dayen J.-F. Electrical read-out of light-induced spin transition in thin film spin crossover/graphene heterostructures. J. Mater. Chem. C. 2021. 9 (8): 2712–2720.

Villalva J., Develioglu A., Montenegro-Pohlhammer N., Sánchez-de-Armas R., Gamo­nal A., Rial E., García-Hernández M., Ruiz-­Gonzalez L., Costa J. S., Calzado C. J., Pérez

E. M., Burzurí E. Spin-state-dependent electrical conductivity in single-walled carbon nanotubes encapsulating spin-crossover molecules. Nat. Commun. 2021. 12 (1): 1578.

Lefter C., Rat S., Costa J. S., Manrique-Juárez M. D., Quintero C. M., Salmon L., Séguy I., Leichle T., Nicu L., Demont P., Rotaru A., Molnár G., Bousseksou A. Current Switching Coupled to Molecular Spin-States in Large-­Area Junctions. Adv. Mater. 2016. 28 (34): 7508–7514.

Lefter C., Davesne V., Salmon L., Molnár G., Demont P., Rotaru A., Bousseksou A. Charge Transport and Electrical Properties of Spin Crossover Materials: Towards Nanoelectro­nic and Spintronic Devices. Magnetochemistry. 2016. 2 (1): 18.

Rotaru A., Dugay J., Tan R. P., Guralskiy I. A., Salmon L., Demont P., Carrey J., Molnár G., Respaud M., Bousseksou A. Nano-electromanipulation of Spin Crossover Nanorods: Towards Switchable Nanoelectronic Devices. Adv. Mater. 2013. 25 (12): 1745–1749.

Abdul-Kader K., Lopes M., Bartual-Murgui C., Kraieva O., Hernández E. M., Salmon L., Nicolazzi W., Carcenac F., Thibault C., Molnár G., Bousseksou A. Synergistic switching of plasmonic resonances and molecular spin states. Nanoscale. 2013. 5 (12): 5288.

Palluel M., Tran N. M., Daro N., Buffière S., Mornet S., Freysz E., Chastanet G. The Interplay between Surface Plasmon Resonance and Switching Properties in Gold@Spin Crossover Nanocomposites. Adv. Funct. Mater. 2020. 30 (17): 2000447.

Guionneau P., Marchivie M., Bravic G., Létard J.-F., Chasseau D. Structural Aspects of Spin Crossover. Example of the [FeIILn(NCS)2] Complexes. Topics in Current Chemistry. 2004. Vol. 234. P. 97–128.

Grzywa M., Röß-Ohlenroth R., Muschielok C., Oberhofer H., Błachowski A., Żukrowski J., Vieweg D., von Nidda H.-A. K., Volkmer D. Cooperative Large-Hysteresis Spin-Crossover Transition in the Iron(II) Triazolate [Fe(ta)2] Metal–Organic Framework. Inorg. Chem. 2020. 59 (15): 10501–10511.

Shepherd H. J., Gural’skiy I. A., Quintero C. M., Tricard S., Salmon L., Molnár G., Bousseksou A. Molecular actuators driven by coope­rative spin-state switching. Nat. Commun. 2013. 4 (1): 2607.

Gural’skiy I. A., Quintero C. M., Costa J. S., Demont P., Molnár G., Salmon L., Shepherd H. J., Bousseksou A. Spin crossover composite materials for electrothermomechanical actua­tors. J. Mater. Chem. C. 2014. 2 (16): 2949–2955.

Manrique-Juárez M. D., Mathieu F., Laborde A., Rat S., Shalabaeva V., Demont P., Thomas O., Salmon L., Leichle T., Nicu L., Molnár G., Bousseksou A. Micromachining-Compatible, Facile Fabrication of Polymer Nanocomposite Spin Crossover Actuators. Adv. Funct. Mater. 2018. 28 (29): 1801970.

Piedrahita-Bello M., Angulo-Cervera J. E., Enriquez-Cabrera A., Molnár G., Tondu B., Salmon L., Bousseksou A. Colossal expansion and fast motion in spin-crossover@polymer actuators. Mater. Horizons. 2021. 8 (11): 3055–3062.

Downloads

Download data is not yet available.