BIMETAL/CARBON NANOCOMPOSITES CuCo@C BASED ON SYNTHETIC HUMIC ACIDS
№3

Keywords

bimetal/carbon nanocompo­sites, humic acids, copper nanoparticles, cobalt nanoparticles.

How to Cite

Litvin, V., Galagan, R., & Shepak, D. (2021). BIMETAL/CARBON NANOCOMPOSITES CuCo@C BASED ON SYNTHETIC HUMIC ACIDS. Ukrainian Chemistry Journal, 87(4), 117-127. https://doi.org/10.33609/2708-129X.87.04.2021.117-127

Abstract

The new original method for the synthesis of bimetal-carbon nanocomposites of copper and cobalt (CuCo@C) of various compositions using synthetic humic acid as a carbon source has been developed. The technique includes the synthesis of humates of copper and cobalt, preparation of their mixture and its pyrolysis in a hydrogen atmosphere. For characterize the final product, the methods of diffraction, cyclic voltammetry, and scanning electron microscopy were used. Comparison of diffractograms of bimetal nanocomposites shown two systems of reflexes from fcc structures, which correspond to metallic copper and cobalt. Diffractometric measurements also indicate the amorphous nature of the carbon matrix. Carrying out the pyrolysis of the metal humates in the reducing atmosphere afford remove almost completely the contained oxygen from the final product, partly in the form of CO2, partly in the form of water. Ions of the transition metal in these conditions are reduced to the metal atoms, forming nanoparticles surrounded by carbon. The formation of a carbon matrix metal around nanoparticles, on the one hand, can ensure their high thermal stability, and on the other hand, contributes to the stabilization of metal nanoparticles and prevents their aggregation. The size of cobalt nanoparticles in nanocomposites varies from 35 to 54 nm, and copper nanoparticles - from 56 to 88 nm, depending on the ratio used in the synthesis of metal humates. It was found that nanoparticles of an alloy of these metals (alpha-cobalt phase) are formed in nanocomposites containing 20% ​​copper and 80% cobalt. Cyclic voltammogrames of bimetallic nanocomposites indicate the presence of dead pores in their composition. It has been established by scanning electron microscopy that in the case of an excess amount of copper in the nanocomposites, spherical formations about 1000 nm in size with faceting signs are formed. As part of the «bottom up» concept proposed a three-stage model of formation.

https://doi.org/10.33609/2708-129X.87.04.2021.117-127
№3

References

Kodolov V. I., Trineeva V. V., Vasil'chenko Ju. S., Zaharov A. B. Proizvodstvo i ispol'zovanie metall-uglerodnyh nanokompozitov. Nanoindustrija. 2011. 3: 24. (іn Russian).

Fedlheim D.L., Foss C.A. Metal Nanoparticles: Synthesis, Characterization, and Applications. New York-Basel: Marcel Dekker, Inc., 2002. 352 р.

Wu G., Santandreu A., Kellogg W., S. Gupta, O. Ogoke, H. Zhang, H-L/Wang, https://www.sciencedirect.com/science/article/abs/pii/S2211285516000124#!L. Dai Carbon nanocomposite catalysts for oxygen reduction and evolution reactions. Nano Energy. 2016. 29: 83.

Gubin S. P., Kosharov Ju. A., Homu­tov G. B., Jurkov G. Ju. Magnitnye nanochasticy: metody poluchenija, stroenie i svojstva. Uspehi himii. 2005. 74: 539. (іn Russian).

Suzdalev I. P. Nanotehnologija: fiziko-himija nanoklasterov, nanostruktur i nanomaterialov. M.: KomKniga, 2006. 592 р. (іn Russian).

Bogatyrev V.M., Borisenko N.V., Oranskaja E.I., Galaburda M.V., Mahno S.N., Gorbik P.P. Sintez i svojstva metall-uglerodnyh nanokompozitov Ni/C, Co/C i Cu/C s povyshennym soderzhaniem metala. Poverhnost'. 2017. 9 (24): 136. (іn Russian).

Kozhitov L.V., Muratov D.G., Emelya­nov S.G., Kostishin V.G., Yakushko E.V., Savchenko A.G., Schetinin I.V., Mosyakina E.P. The Structure and Magnetic Properties Metal-carbon Nanocomposites NiCo/C on Based of Polyacrylonitrile. Journal of Nano- аnd Electronic Physics. 2014. 6(3): 03040.

Sharma G., https://www.sciencedirect.com/science/article/pii/S1018364717303518#!Kumar A., Sharma S., Naushad M., https://www.sciencedirect.com/science/article/pii/S1018364717303518#! Dwivedi R., Othman Z., Mola G. Novel development of nanoparticles to bimetallic nanoparticles and their composites: A review. Journal of King Saud University Science. 2019. 31 (2): 257.

Litvin V. A., Galagan R. L., Minaev B. F. Synthesis and Properties of Synthetic Analogs of Natural Humic Acids. Russian Journal of Applied Chemistry. 2012. 85(2): 296.

Gin'e A. Rentgenografija kristallov, M.: Fiz-mat.lit. pod red. akad. N. V. Belova, 1964. 600 р. (іn Russian).

Lytvyn V.A. Syntetychni analohy pryrodnykh huminovykh rechovyn : monohra­fiia. Cherkasy: vydavets Chabanenko Yu. A., 2020. 230 р. (in Ukrainian).

Orlov D. S. Guminovye veshhestva v bio­sfere. Soros. obr. zhurn., 1997. 2: 56. (іn Russian)

Diagrammy sostojanija dvojnyh metallicheskih sistem. Spravochnik / pod red. Ljakisheva N.P. Mashinostroenie, 2000. 600 р. (іn Russian).

Nishizawa T., Ishida K. The Co-Cu (Cobalt-Copper) system. Bul. Alloy Phas. Diagr. 1984. 5(2): 161.

Sirisomboonchai S., Kongparakul S., Reubroycharoen P., Guan G., Zhang H., Samart C. Fabrication of a Copper/Carbon Composite Based on Biomass for Electrochemical Application. J. Japan Institute of Energy. 2017. 96: 273.

Downloads

Download data is not yet available.