polymer matrices, pseudoro-taxane, β-cyclodextrin, polyacrylamide, realease kinetics, drug, pyrolysis mass spectrometry, structure.

How to Cite

Kobrina, L., Boiko, V., Riabov, S., Orel, L., Sinelnikov, S., & Stompel, V. (2019). POLYACRYLAMIDE MATRIX BASED ON β-CYCLODEXTRIN-CONTAINING PSEUDOROTAXANE FOR DRUGS RELEASE: SYNTHESIS AND PROPERTIES. Ukrainian Chemistry Journal, 85(10), 102-115. https://doi.org/10.33609/0041-6045.85.10.2019.102-115


Formation and studying of different inclusion complexes, which could be attributed to the supra-molecular structures, are still remaining among an actual topics in the modern polymer chemistry. The ability of cyclodextrins to selectively interact with a range of their size complementary molecules makes them promising objects for supramolecular chemis-try. Therefore, we obtained polymer matrices involv-ing acrylamide and methylene-bis-acrylamide with different content of pseudorotaxane based on β-cyc-lodextrin and polyoxypropylenedimethacrylate and confirmed their structures by different techniques (FTIR-spectroscopy, DSC and X-ray analysis). The presence of pseudorotaxane in polymer matrices was proved by monitoring β-cyclodextrin’s bands stret-ching vibration (FTIR method). When analyzing X-ray profiles of polymer matrices with different con-tent of pseudorotaxane, we found that the influence of pseudorotaxane is insignificant at its content of 5 and 8 % wt. In addition, the study of pseudoro-taxane effect on the kinetics of drugs release reve-aled that the introduction of 10 wt.% of pseudo-rotaxane into the polymer matrices appreciably de-celerates desorption of drugs and, thus this content being considered as an optimal one for this purpose. Also the polymer matrices’ structure was studied by the pyrolysis mass spectrometry method. It has been determined the temperature decomposition, rate of total ion current, probable composition of ion frag-ments of samples and intensity of their isolation in the mass spectra of polyacrylamide with different content of pseudorotaxane during pyrolysis. Thus, the results obtained can be explained by the for-mation of specific intermolecular bonds emerged between pseudorotaxane fragments and chains of po-lymer matrice.



1 Kumari A., Yadav S.K., Yadav S.C. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids and Surfaces B: Biointerfaces. 2010. 75. -P. 1–18.
2 Polymeric Drugs and Drug delivery systems .Ed. Ottenbrite R.M., Kim S.W. (CRC Press LLC,2019).
3 Senapati S., Mahanta A.K., Kumar S., Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduction and Targeted Therapy. 2018. 3:1.
4 Orel L.A., Riabov S.V., Kobrina L.V., Goncharenko L.A. Natural polymers as a nanomatrices for the transport of drugs. Polymer Journal. 2016. 38, № 3: 185 [in Ukrainian].
5 Jain K. K. Drug Delivery Systems – An Overview. Methods in Molecular Biology. 2008. 437: 1.
6 Balamuralidhara V., Pramodkumar T. M., Srujana N., Venkatesh M. P., Gupta N. V., Krishna K. L., Gangadharappa H. V. pH Sensitive Drug Delivery Systems: A Review. American Journal of Drug Discovery and Development. 2011. 1: 24.
7 Vakuliuk P., Furtat I., Vortman M., Sheremet A., Bondarenko K., Burban A., Shevchenko V. Synthesis and characterization of рh-sensitive hydrogel as matrices for incorporation of medications. NaUKMAchem. 2012. 131:23 [in Ukrainian].
8 Samchenko Yu., Konovalova V., Kryklua S., Pasmurceva N. Nanosized ferrohydrogels based on N-isopropilacrylamide for controlled drug resease . Polymer Journal . 2015. 37, № 4: 416 [in Ukrainian].
9 Fihurka N.V., Nosova N.G., Stasiuk A.V., Nagornyak M.I., Hermanovych S.B., Samaryk V.Ya. Synthesis and properties of heterohydrogel materials. Visnyk Natsionalnoho universytetu "Lvivska politekhnika". Serie: Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia. 2017. 868: 333[in Ukrainian].
10 Chen W.-H., Liao W.-C., Sohn Y. S., Fadeev M., Cecconello A., Nechushtai R., Willner I. Drug Carriers: Stimuli-Responsive Nucleic Acid-Based Polyacrylamide Hydrogel-Coated Metal–Organic Framework Nanoparticles for Controlled Drug Release . Advanced Functional Materials. 2018. 28. №8: 1705137.
11 Liu X., Zhang Q., Li K., Duan L., Gao G. Multipurpose and Durable Adhesive Hydrogel Assisted by Adenine and Uracil from Ribonucleic Acid. Chemistry A European Journal. 2018. 24, № 56:15119.
12 Panyam J., Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue .Adv. Drug Deliv. Rev. 2003. 55, №3: 329.
13 Kumari A., Yadav S.K., Yadav S.C. Biodegradable polymeric nanoparticles based drug delivery systems . Colloids and Surfaces B: Biointerfaces. 2010.75: 1.
14 Loftsson T., Duchene D. Cyclodextrins and their pharmaceutical applications .International Journal of Pharmaceutics. 2007. - 329, № 1–2: 1.
15 Sharma N., Baldi A. Exploring versatile applications of cyclodextrins: an overview . Drug Delivery. 2016. 23, № 3: 729.
16 . Orel L.A., Riabov S.V., Kobrina L.V., Goncharenko L.A. Polymer hydrogels based on cyclodextrins as carriers for drugs: synthesis and physicochemical propeties. Polymer Journal. 2015. 37, № 4: 330[in Ukrainian].
17 Brewster M. E., Loftsson T. Cyclodextrins as pharmaceutical solubilizers. Advanced Drug Delivery Reviews. 2007. 59, № 7:645.
18 Shelley H., Babu R.J. Role of cyclodextrins in nanoparticle-based drug delive-ry systems . Journal of pharmaceutical sciences. 2018. 107, №7: 1741.
19 Poudel A. J., He F., Huang L., Xiao L., Yang G. Supramolecular hydrogels based on poly (ethylene glycol)-poly (lactic acid) block copolymer micelles and α-cyclodextrin for potential injectable drug delivery system. Carbohydrate Polymers. 2018. 194: 69.
20 Hammoud Z., Khreich N., Auezova L., Fourmentin S., Elaissari A., Greige-Gerges H. Cyclodextrin-membrane interaction in drug delivery and membrane structure maintenance. International Journal of Pharmaceutics. 2019. 564:59.
21 Alvarez Lorenzo C., Rosa dos Santos J.F., Sosnik A., Torres Labandeira J.J., Concheiro A. Hydrogels with cyclodextrins as highly versatile drug delivery systems.( In: Hanbook of Hydrogels: Properties, Preparation & Applications, D.B. Stein Ed., Nova Science Publishers. New York. 2009).
22 Bibby D.C., Davies N.M., Tucker I.G. Mechanisms by which cyclodextrins modify drug release from polymeric drug delivery systems. Int. J. Pharm. 2000. 197: 1.
23 Babu R.J., Dayal P., Singh M. Effect of cyclodextrins on the complexation and nasal permeation of melatonin. Drug Deliv. 2008. 15: 381.
24 Tonelli A.E. Nanostructuring and functionalizing polymers with cyclodextrins. Polymer. 2008. 49: 1725.
25 Orel L.A, Kobrina L.V., Sinelnikov S.I., Shtompel V.I., Boyko V.V., Riabov S.V. Syntez ta vlastyvosti tsyklodekstrynvmisnoho psevdorotaksanu [Synthesis and properties of β-cyclodextrin-containing pseudorotaxane]. Ukrayinskyy khimichnyy zhurnal. 2017. 83, № 8: 88 [in Ukrainian].
26 Orel L., Kobrina L., Sinelnikov, S. Boiko V., Demchenko V., Riabov S. β-сyclodextrin-containing pseudorotaxanes as building blocks for cross-linked polymers . Journal of Inclusion Phenomena and Macrocyclic Chemistry . 2018 , № 9: 1.
27 Beynon J.H. Mass-spektrometrija i primenenie v organicheskoj himii [ Mass –spectrometry and its applications to organic chemistry]. Trans.from English (М.: World, 1964) [ in Russian].
28 Hmelnitskiy R.A., Lukashenko I.M., Brodskiy E.S. Piroliticheskaja mass-spektrometrija vysokomolekuljarnyh soedinenij [ Pyrolysis Mass –spectrometry of Macromolecular Compounds] ( М.: Chemistry, 1980). [ in Russian].
29 Boyko V.V., Riabov S.V., Kobrina L.V., Dmitrieva T.V., Shtompel’ V.I., Gayduk R.L., Kercha Yu.Yu. Procesy biodegradacii segmentovanyh poliyretanov [Biodegradation processes of segmented polyurethanes] .Ukrayinskyy khimichnyy zhurnal. 2007. 73, № 7:51[ in Russian].
30 Katalog sokraschennyh mass-spektrov [Catalogue of downsized mass spectra]. (Novosibirsk:Science,1981). [ in Russian].
31 Mathews J.L., Peiser H.S., Richards R.B. The x-ray measurement of the amorphous content of polyethelene samples. Actacryst. 1949. 2, № 1:85.
32 Martynov M.A, Vylegzhanina K.A. Rentgenografiya polimerov. [Radiography of polymers (L.: Chemistry, 1972) [in Russian].
33 Ruland W. Small-angle scattering of two-phase systems: Determonation and significance of systematic deviations from Porod’s law. J. Appl. Cryst.1971. 4, №1:70.
34 Shtompel V.I., Kercha Y.Y. Struktura lineynykh polimerov.[ Structure of linear polymers] (Kiev: Naukova dumka, 2008). [in Russian].
35 Perret R., Ruland W. Eine verbesserte Auswertungsmethode fur die Rontgen-kleinewinkelstreuung von Hochpolymeren. Kolloid Z. – Z. Polymere. 1971.247, №.1-2:835.
36 Guinier A., Fourner G. Small-angle scattering of x-rays. ( New York: John Wiley Sons , 1955).


Download data is not yet available.