electrodeposition, pyrophosphate electrolyte, tin films, specific capacity, reversibility, lithium-ion battery.

How to Cite

Shmatok, Y., Globa, N., Nikitenko, V., Babenkov, E., & Kublanovsky, V. (2019). ELECTROCHEMICAL CHARACTERISTICS OF TIN FILMS IN CYCLING IN LITHIUM-ION BATTERIES. Ukrainian Chemistry Journal, 85(10), 67-77. https://doi.org/10.33609/0041-6045.85.10.2019.67-77


Thin electrolytic fine tin sediments were obtained from pyrophosphate electrolyte under different electrolysis conditions and duration. The electrochemical characteristics of tin coatings as anode materials of lithium-ion batteries are studied using potentiodynamic and galvanostatic cycling methods. The effect of the properties of coatings, in particular their mass, on the value of specific capacitance and its stability, including during discharge with different current densities, has been established. It is shown that the studied tin sediments have high initial specific capacity that is close to theoretically possible. The maximum stability of the specific capacity during cycling is characteristic of electrodes with minimal masses of precipitation. The impedance spectra recorded for the studied electrodes in the initial state and after the first lithiation are analyzed.



1. Schalkwijk W.A., Scrosati В. Advanced in Lithium-ion Batteries. (New York: Plenum publishers, 2002).
2. Pridatko K.I., Churikov A.V. Anode non-carbon lithium-accumulating composite materials. Elektrokhimicheskaya Energetica. 2005. 5 (1): 16. [in Russian].
3. Kamali A.R., Fray D.J. Tin-based materials as advanced anode materials for lithium ion batteries. Rev. Adv .Mater. Sci. 2011. 27: 14.
4. Maroni F., Bruni F., Suzuki N., Aihara Tu., Croce F. Electrospun tin-carbon nanocomposits as anode material for all solid state lithium-ion batteries. J. Solid State Electrochem. 2019. 23: 1697.
5. Zhao H., Jiang C., He X., Ren J. Advanced structures in electrodeposited tin base anodes for lithium ion batteries. Electrochim. Acta. 2007. 52: 7820.
6. Hadsoun J., Pacero S., Scrosati B. Electrodeposited Ni-Sn intermetallic electrodes for advanced lithium ion batteries. J. Power Sources. 2006. 160: 1336.
7. Huang L., Wei H.B., Ke F.S., Fan X.Y., Li J.T., Sun S.G. Electrodeposition and lithium storage performance of three-demension porous reticular Sn-Ni alloy electrodes. Electrochem. Acta. 2009. 54: 2693.
8. Bersirova O., Kublanovskii V. Crystalline Roughness as a Morphological Characteristic of the Surface of Electroplated Silver Coatings. Russ. J. Appl. Chem. 2009. 82: 1944.
9. Bersirova O., Kublanovsky V., Cesiulis H. Electrochemical Formation of Functional Silver Coatings: Nanostructural Peculiarities. ECS Transactions. 2013. 50: 155.
10. Orekhova V.V., Andryushchenko F.K. Issledovanie kineticheskih zakonomernostei electrodnyh reakcii v poliligandnyh electrolitah. Electrohomiya. 1974. 10 (3): 363. [in Russian].
11. Orekhova V.V., Andryushchenko F.K. Polyligand electrolytes plating. (Kharkov: Vishcha shkola, 1979). [in Russian].
12. Kublanovsky V.S., Nikitenko V.N. Mechanism of the electrodeposition of palladium coatings from glycinate electrolytes. J. Electroanal. Chem. 2013. 699: 14.
13. Kublanovsky V.S., Nikitenko V.N. Electrochemical properties of palladium(II) trans- and cis-diglycinate complexes. Electrochim. Acta. 2011. 56: 2110.
14. Kublanovsky V.S., Nikitenko V.N., Globa N.I. Effect of the nature of a ligand on electrochemical characteristic of tin films in cycling in lithium-ion batteries. Russ. J. Appl. Chem. 2015. 88: 407.
15. Kublanovsky V.S., Nikitenko V.N., Globa N.I. Electrochemical Deposition of Corrosion-Resistant Coatings from Tin-Nickel Alloys. Mater. Sci. 2017. 52: 687.
16. Idota Y., Kubota T., Matsufuji A., Maekawa Y., Miyasaka T. Tin-based amorphous oxide: a high-capacity lithium-ion-storage material. Science. 1997. 276: 1395.
17. Aifantis K.E., Hackney S.A., Dempsey J.P. Design criteria for nanostructured Li-ion batteries. J. Power Sources. 2007. 165: 874.
18. Amadei I., Panero S., Scrosati B., Cocco G. Schiffini L. The Ni3Sn4 intermetallic as novel electrode in lithium cells. J. Power Sources. 2005. 143: 227.
19. Beattie S.D., Hatchard T., Bonakdarpour A., Hewitt K.C., Dahn J.R. Anomalous, high-voltage irreversible capacity in tin electrodes for lithium batteries. J. Electrochem. Soc. 2003. 150: A701.
20. Winter M., Besenhard J.O. Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochim. Acta. 1999. 45: 31.
21. Globa N.I., Shmatok Y.V., Milovanova O.I., Sirosh V.A., Kirillov S.A. Electrolytic Double-Layer Supercapacitors Based on Sodium-Ion Systems, with Activated-Carbon Electrodes. Russ. J. Appl. Chem. 2018. 91: 187.
22. Churikov A.V., Nimon E.S., Lvov A.L. Impedance of Li—Sn, Li—Cd and Li—Sn—Cd alloys in propylene carbonate solution. Electrochim. Acta. 1997. 42: 179.
23. Churikov A.V., Gamayunova I.M., Shirokov A.V. Ionic processes in solid-electrolyte passivating films on lithium. J. Solid State Electrochem. 2000. 4: 216.
24. Churikov A.V., Pridatko K.I., Ivanishchev A.V., Ivanishcheva I.A., Gamayunova I.M., Zapsis K.V., Sycheva V.O. Impedance spectroscopy of lithium-tin film electrodes. Russ. J. Electrochem. 2008. 44 (5): 550.
25. Churikov A.V., Ivanishchev A.V., Ivanishcheva I.A., Gamayunova I.M., Zapsis K.V., Sycheva V.O. Lithium intercalation into thin-film lithium-tin and lithium-carbon electrodes: an impedance spectroscopy study. Elektrokhimicheskaya Energetica. 2007. 7 (4): 169. [in Russian].
26. Aravindan V., Lee Y.S., Madhavi S. Research progress on negative electrodes for practical Li-ion batteries: beyond carbonaceous anodes. Adv. Energy Mater. 2015. 5: 1402225.


Download data is not yet available.