manganite, perovskite, solid solution, crystallochemical properties, magnetic fluid, specific losses of power.

How to Cite

Timashkov, I., Shlapa, Y., Solopan, S., & Belous, A. (2019). SYNTHESIS AND CRYSTALLOCHEMICAL PROPERTIES OF Ce-SUBSTITUTED NANOPARTICLES OF MANGANITE (La,Sr)MnO3. Ukrainian Chemistry Journal, 85(9), 17-24.


Serious of Ce-substituted lanthanum-strontium man-ganites La0.7–xSr0.3CexMnO3 (x = 0–0.2) nanoparticles were synthesized by sol-gel method with further heat treatment of precursors at 800 °C. Crystallographic properties of obtained nanoparticles were investiga-ted by X-ray diffraction method. According to XRD data, it was established that the substitution of lan-thanum ions by cerium in the crystalline structure and formation of single-phased nanoparticles occurs only up to 5 % mol. of Ce regardless of the heating temperature. Linear decreasing the cell volume of nanoparticles in this concentration range of Ce satis-fies the Vegard law and indicates on the formation of a continuous series of solid solutions with the dis-torted perovskite up to 5 % of Ce. At higher concen-trations of Ce there are additional peaks on the XRD patterns, which point on the formation of an addi-tional phase of CeO2. According to TEM studies, it was calculated that the average size of was 30–40 nm. To estimate heating efficiency of synthesized nanoparticles in the alternating magnetic field, mag-netic fluids based on the synthesized nanoparticles and aqueous dextran solution were prepared. It was shown that they effectively heated up to controlled temperatures in an alternating magnetic field, and their heating efficiency was directly proportional to the increase of the concentration of cerium. Accor-ding to the results of the complex studies, it was shown the possibility to synthesize single-phase Ce-substituted nanoparticles of manganite with a pe-rovskite structure. It was established that cerium does not significantly influence on the change of magnetic properties of such nanoparticles and they are promising for further investigations as the in-ducers of magnetic hyperthermia, as well as for the biological tests.


Qiu J.-D., Xiong M., Liang R.-P., Peng H.-P., Liu F. Synthesis and characterization of ferrocene modified Fe3O4/Au magnetic nanoparticles and its application. J. Biosens. and Bioelec. 2009. 24: 2649.

Xie L., Jiang R., Zhu F., Liu H., Ouyang G. Ap-plication of functionalized magnetic nanopartic-les in sample preparation. J. Anal. Bioanal. Chem. doi 10.1007/s00216-013-7302-6

Arruebo M., Fernández-Pacheco R., Ibarra M. R., Santamaría J. Magnetic nanoparticles for drug de-livery. J. Nanotoday . 2007. 2: 3.

Jun B.-H., Noh M. S., Kim J., Kim G., Kang H., Kim M.-S. Multifunctional silver-embedded mag-netic nanoparticles as SERS nanoprobes and their applications. J. Nano Small Micro. 2010. 6: 119.

Dobson J. Magnetic nanoparticles for drug deli-very. J. Drug Develop. Res. 2006. 67: 55.

Sun C., Lee J.S.H., Zhang M. Magnetic nanopar-ticles in MR imaging and drug delivery. J. Advan. Drug Del. Rev. 2008. 60: 1252.

Ito A., Shinkai M., Honda H., Kobayashi T. Medi-cal Application of Functionalized Magnetic Na-noparticles. J. Biosci. Bioengin. 2005. 100: 1. doi: 10.1263/jbb.100.1

Yang C.-C., Yang S.-Y., Chieh J.-J., Horng H.-E., Hong C.-Y., Yang H.-C., Chen K.H., Shih B.Y., Chen T.-F., Chiu M.-J. Biofunctionalized mag-netic nanoparticles for specifically detecting biomarkers of alzheimer’s disease in vitro. J. ACS Chem. Neurosci. 2011. 2: 500.

Rosensweig R.E. Heating magnetic fluid with al-ternating magnetic field. J. Magne. Magne. Mat. 2002. 252: 370.

Huh A.J., Kwon Y.J. “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J. Control. Rel. 2011. 156: 128.

He Q., Liu J., Liang J., Huang C., Li W. Synthe-sis and antibacterial activity of magnetic MnFe2O4/ Ag composite particles. J. Nanosci. Nanotech. Lett. 2014. 6: 385.

Jadhav S.V., Nikam D.S., Khot V.M., Thorat N.D., Phadatare M.R., Ningthoujam R.S., Salunkhecand A.B., Pawar S.H. Studies on colloidal stability of PVP-coated LSMO nanoparticles for magnetic fluid hyperthermia. New J. Chem. doi: 10.1039/ c3nj00554b

Jadhava S.V., Nikama D.S., Khota V.M., Mali-band S.S., Pawara S.H. PVA and PEG function-alised LSMO nanoparticles for magnetic fluid hyperthermia application. J. Mat. Charact. doi: 10.1016/j.matchar.2015.03.001

Shlapa Y., Kulyk M., Kalita V., Polek T., Tovsto-lytkin A., Greneche J.-M., Solopan S., Belous A. Iron Doped (La,Sr)MnO3 Manganites as promi-sing mediators of self-controlled magnetic nano-hyperthermia. J. Nanoscale Res. Lett. 2016. 11: 1.

Shlapa Yu., Solopan S., Bodnaruk A., Kulyk M., Kalita V., Tykhonenko-Polishchuk Yu., Tovsto-lytkin A., Zinchenko V., Belous A. Lanthanum-strontium manganites for magnetic nanohy-perthermia: fine tuning of parameters by substi-tutions in the lanthanum sublattice. J. of Alloys Compd. 2017. 702: 31.

Valkoa M., Leibfritzb D., Moncola J., Croninc M.T.D., Mazura M., Telser J. Free radicals and antioxidants in normal physiologicalfunctions and human disease. The Internat. J. of Biochem. & Cell Bio. 2007. 39: 44.

Shydlovska O., Zholobak N., Dybkova S., Osin-sky S., Bubnovskaya L., Yelenich O., Solopan S., Belous A. Synthesis and comparative charac-teristics of biological activities of (La,Sr)MnO3 and Fe3O4 nanoparticles. Eur. J. Nanomed. 2017. 9 (1): 33.

Alaraby M., Hernandez A., Annangi B., Demir E., Bach J., Rubio L., Creus A., Marcos R. Antioxi-dant and antigenotoxic properties of CeO2 NPs

and cerium sulphate: studies with drosophila me-lanogasteras apromisingin vivomodel. J. Nano-tox. doi: 10.3109/17435390.2014.976284

Karakoti A.S., Monteiro-Riviere N.A., Aggarwal R., Davis J.P., Narayan R.J., Self W.T., McGin-nis J., Seal S. Nanoceria as antioxidant: synthesis and biomedical applications. J. Bio.Mat. Sci. 2008. 1: 33.

Shlapa Y., Sarnatskaya V., Timashkov I., Yush-ko L., Antal I., Gerashchenko B., Nychyporenko I., Belous A., Nikolaev V., Timko M. Synthesis of CeO2 nanoparticles by precipitation in rever-sal microemulsions and their physical-chemical and biological properties. J. Applied Phys. 2019. 125: 412.

Tsekhmistrenko O.S., Tsekhmistrenko S.I., Bi-tyutskyy V.S., Melnichenko O.M., Oleshko O.A. Biomimetic and antioxidant activity of nanocrys-talline cerium dioxide. J. World Med. Bio. 2018. 63: 196.

D’Angelo B., Santucci S., Benedetti E., Di Lore-to S., Phani R., Falone S. Cerium oxide nanopar-ticles trigger neuronal survival in a human Alz-heimer disease model by modulating BDNF pathway. J. Current Nanosci. 2009. 5: 167.

Colon J., Herrera L., Smith J., Patil S., Komanski C., Kupelian P., Seal S., Jenkins D.W., Baker C.H. Protection from radiation-induced pneumonitis using ceriumoxide nanoparticles. J. Nanomed.: Nanotech., Biology, and Med. 2009. 5: 225.

Shlapa Y., Solopan S., Belous A. Effect of me-chano-chemical processing in the synthesis of weakly agglomerated ferromagnetic La1–xSrx-MnO3 nanoparticles on their properties. 2015 IEEE 35th International Conference on Electron-ics and Nanotechnology (ELNANO). -Kyiv, 2015. 282.


Download data is not yet available.