SYNTHESIS, PROPERTIES CaCu3Ti4O12 WITH COLOSSAL VALUE OF THE DIELECTRIC PERMITTIVITY
№1

Keywords

CaCu3Ti4O12 – ceramics, colossal dielectric constant, microstructure.

How to Cite

Konchus, B., Yanchevskiy, O., Belous, A., & V’yunov, O. (2019). SYNTHESIS, PROPERTIES CaCu3Ti4O12 WITH COLOSSAL VALUE OF THE DIELECTRIC PERMITTIVITY. Ukrainian Chemistry Journal, 85(6), 77-86. https://doi.org/10.33609/0041-6045.85.6.2019.77-86

Abstract

Ceramic materials CaCu3Ti4O12 were synthesized by solid-phase reactions technique. The sequence of chemical reactions during the synthesis has been determined. Phase CaCu3Ti4O12 appears at 700 °C. At 800 – 900 °C, the intermediate phases CaTiO3, CuTiO3 and Ca3Ti2O7 are formed. Calcium and copper titanates, CaTiO3 and CuTiO3 interact to form CaCu3Ti4O12. Ca3Ti2O7 phase with pyrochlore structure is stable and prevent the formation of final product, CaCu3Ti4O12. A method for the synthesis of CaCu3Ti4O12 by solid-state reactions technique from previously synthesized CaTiO3 (at 1050 °С) and CuTiO3 (at 950  °С), taken in a molar ratio of 1:3, is proposed. This method give the possibility to avoid the appearance of an undesirable Ca3Ti2O7 phase with the pyrochlore structure and to reduce the content of free copper oxide to value less than 0.5 mol.%. In addition, instead of the copper oxide, which is usually used in solid-state reaction technique, the chemically more active form of the copper-containing reagent, CuCO3∙Cu(OН)2 were used. This reduce the synthesis time of the intermediate CuTiO3. The crystal structure, chemical composition, microstructure and electrophysical parameters of ceramics have been analyzed. The synthesized ceramics CaCu3Ti4O12 is cubic body-centered (space group Im-3) with the unit cell parameter a = 7.3932 Å, which agreed with the literature data. The calculated tolerance factor of CaCu3Ti4O12, t = 0.7626 is not sufficient for a stabilization of peroskite ABO3 structure; that is why the crystal structure of this compound contains 3 different cation sites: dodecahedral (Ca2+), octahedral (Ti4+), tetrahedral (Cu2+). At 1150 °C, the density of CaCu3Ti4O12 ceramic sintered has a maximum (90% of the theoretical density). At infra-low frequencies (10-3 Hz), the dielectric constant (e) reaches record values of 107, however, dielectric losses (tg d) up to 10 were observed. In the frequency range 10-3 - 105 Hz the value of ɛ exceeds 104; and at 105 Hz minimum of the dielectric losses (tg δ ~ 0.1) is observed. A comparative analysis of methods for the synthesis of CaCu3Ti4O12 shows that the synthesis conditions of material of the same chemical composition can be crucial in creating high dense ceramic with uniform grains, high dielectric constant and low dielectric losses in a wide frequency range.

https://doi.org/10.33609/0041-6045.85.6.2019.77-86
№1

References

AhmadipourM., AinM. F. A., Ahmad Z. A. A. A short review on coppercalcium titanate (CCTO) electroceramic: synthesis, dielectric properties, film deposition, and sensingapplication . Nano-Micro Letters. 2016. 8 (4): 291.

Guillemet-Fritsch S., Lebey T., Boulos M., Durand B. Dielectric properties of CaCu3Ti4O12 based multiphased ceramics. J. Eur. Cer. Soc.2006. 26 (7): 1245.

Sinclair D. C., Adams T.B., Morrison F.D., West A.R. CaCu3Ti4O12: one-step internal barrier layer capacitor. Appl. Phys. Lett. 2002. 80 (12): 2153.

Kulawik J., Szwagierczak D., Synkiewicz B. Fabrication of CaCu3Ti4O12 multilayer capacitors, their microstructure and dielectric properties.Ferroelectrics. 2013. 447 (1): 19.

Ramirez M.A., Bueno P.R., Tararamet R., Cavalheiro A.A., Longo E., Vareka J.A. Evaluation of the effect of the stoichiometric ratio of Ca/Cu on the electrical and microstructural properties of the CaCu3Ti4O12 polycrystalline system. J. Phys. D: Appl. Phys. 2009. 42 (18): 185503.

Sun D.L.,Wu Ai Y., Yin S. T. Structure, properties, and impedance spectroscopy of CaCu3Ti4O12 ceramics prepared by sol–gel process. J. Am. Cer. Soc. 2008. 91 (1): 169.

Liu J., Smith R. W., Mei W. N. Synthesis of the giant dielectric constant material СaCu3Ti4O12 by wet-chemistry methods. Chem. Mat. 2007. 19 (24): 6020.

Liu J., Sui Y., Duan C.G., MeiW.N., Smith R.W., Hardy J.R. CaCu3Ti4O12: Low-temperature synthesis by pyrolysis of anorganic solution. Chem. Mat. 2006. 18 (16):3878.

Abdelal O.A.A., Hassan A.A., Ali. M.E.S. Dielectric Properties of Calcium Copper Titanates

(CaCu3Ti4O12) Synthesized by Solid State Reaction. Arab J. Nucl.Sci. Appl. 2012. 45 (4):354.

Fernandez J. F., Leret P., Romero J.J., De Frutos J., De La Rubia M.Б.,Martin-Gonzбlez M.S.,

Costa-Krдmer J.L., Fierro J.L., Quesada A., Garcнa M.Б. Proofs of the coexistence of two magnetic contributions in pure and doped CaCu3-Ti4O12 giant dielectric constant ceramics. J. Am. Ceram. Soc. 2009. 92 (10): 2311.

Leret P., De La Rubia M.Б, Rubio-Marcos F., Romero J.J., Fernandez J. F. Effect of processing on the sintering of high dielectric constant 2011. 8 (5): 1201.

Fang T.T., Mei L.T. Evidence of Cu deficiency: a key point for the understanding of the mystery of the giant dielectric constant in CaCu3Ti4O12. J. Am. Cer. Soc. 2007. 90 (2):638.

Lin Y.-H., Cai J., Li M., Nan C.-W., He J.. High dielectric and nonlinear electrical behaviors in TiO2-rich CaCu3Ti4O12 ceramics. Appl.Phys. Let. 2006. 88 (17):172902.

Hong S.?H., Kim D.Y., Park H.M. Kim Y. Electric and dielectric properties of Nb?doped CaCu3Ti4O12 ceramics. J. Am. Cer. Soc. 2007. 90(7):2118.

Jumpatam J., Putasaeng B., Yamwong T., Thongbai P., Maensiri S.. Enhancement of giant

dielectric response in Ga-doped CaCu3Ti4O12 ceramics. Cer. Inter. 2013. 39 (2): 1057.

Feng L., Tang X.,Yan Y., Chen X., Jiao Z., Cao G. Decrease of dielectric loss in CaCu3Ti4O12 ceramics by La doping. Рhysica Satus Solidi (a). 2006. 203 (4): R22.

Graham K., Woodward P. M. Cation ordering in perovskites. J. Mat. Chem. 2010. 20 (28): 5785.

Krohns S. Grenzflachenpolarisationen in Ubergangsmetalloxiden:von der Grundlagenforschung zur Anwendung: Erlangung des Doktorgrades/Universitat Augsburg. Augsburg, 2010.

Romero J.J., Leret P., Rubio-Marcos F., Quesada A., Fernбndez J.F.. Evolution of the intergranular phase during sintering of CaCu3Ti4O12 ceramics. J. Eur. Cer. Soc. 2010. 30 (3):737.

Jumpatam, J., Putasaeng B., Yamwong T., Thongbai P., Maensiri S. Enhancement of giant dielectricresponse in Ga-doped CaCu3Ti4O12 ceramics. Cer. Inter. 2013. 39 (2):1057.

Glazer A.M. The classification of tilted octahedrain perovskites. Acta Cryst. Sec B: Struct. Crys. Crys. Chem. 1972. 28 (11):3384.

Bozin E.S., Petkov V., Barnes P.W.,Woodrard P.M., Vogt T., Mahantin S.D., Billinge S.J.L. Temperature dependent total scattering structural study of CaCu3Ti4O12. J. Phys.: Cond. Mat. 2004. 16 (44): S5091.

SubramanianM.A., Li D., Duan N., Reisner B.A., Sleight A.W. High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases. J. Solid. State Chem. 2000. 151 (2): 323.

Smolensky G.А., Bokov V.А,. Isupov V.А. Kraynik N.N., Pasynkov P.E., Shur M.S. Segnetoelektriki i antisegnetoelektriki. (Leningrag: Nauka, 1971).

Smolensky G.А., Bokov V.А,. Isupov V.А. Kraynik N.N., Pasynkov P.E., Sokolov A.I., Yushin N.K. Fizika segnetoelektricheskikh yavleniy. (Leningrad: Nauka, 1985).

Shannon R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. 1976. A32: 751.

Goronovsky L.Т., Nazarenko Y.P., Nekryach E.F., Kratkiy spravochnik po khimii. (Kiev: Naukova dumka, 1987).

Levchenko A.A., Basalik T., le Parlouer P., Navrotsky A. (2015). “High-temperature temperature calorimetry and thermal analysis of perovskites”, Rertrieved 03.06.2019, from https:// us.se taram.com/wp-content/uploads/2015/01/PO 019- High-temperature-calorimetry-and-thermal- analysis-of-perovskites.pdf

Singh L., Rai U.S., Mandal K.D., Singh N.B. Progress in the growth of CaCu3Ti4O12 and related functional dielectric perovskites. Prog. Crys. Growth Charact. Mater. 2014. 60 (2):15.

Lu F.H., Fang F.X., Chen Y.S. Eutectic reaction between copper oxide and titanium dioxide. J. Eur. Ceram. Soc. 2001. 21 (8):1093.

Li G., Chen Z., Sun X., Liu L., Fang L., Elouadi B. Electrical properties of AC3B4O12-type perovskiteceramics with different cation vacancies. Mat. Res. Bull. 2015. 65: 260.

Downloads

Download data is not yet available.