LIBs, anode materials, Li-conductive perovskite

How to Cite

Mas, H., Khomenko , O., Lisovskyi , I., Khomenko , V., Solopan , S., & Belous , A. (2023). SYNTHESIS AND INVESTIGATION OF ELECTROCHEMICAL CHARACTERISTICS OF OXIDE Li-CONDUCTIVE MATERIALS WITH SPINEL AND PEROSKITE STRUCTURES. Ukrainian Chemistry Journal, 89(1), 3-17.


Lithium-ion batteries (LIBs) are widely used in electronic devices due to their numerous advantages, namely high energy density, high capacity, and long service life. One of the important components of a battery is the anode. In order to ensure high characteristics of LIB, the anode material must have high capacity, high ionic and electronic conductivities, and low cost. However, commonly used anode materials in lithium-ion batteries have a number of disadvantages. For example, a graphite-based anode is characterized by significant changes in volume during intercalation/deintercalation of lithium ions, high energy losses, and rapid deterioration of characteristics at high discharge/charge rates; Li4Ti5O12 have a low theoretical specific capacity, low electronic conductivity and low diffusion rate of lithium ions.

Thus, the search for anode materials with high capacity and capability rate, as well as small volume change during lithium intercalation/deintercalation, remains an urgent task. A promising way may be the use of materials with intercalation pseudocapacitive behavior of charge accumulation, which occurs due to the intercalation of ions in tunnels or layers of active materials without a crystallographic phase transition. LixLa2/3-x/3TiO3 is well known as a superionic conductor with a high ionic conductivity σ ≈ 10–3 S/cm at room temperature. It crystallizes in a perovskite-type structure that consists of a framework of TiO6 octahedra stabilized by La atoms, and has nume­rous vacancies in the unoccupied positions 18d and 6a, that could participate in the stora­ge and motion of Li ions.

Electrochemical characteristics of LixLa2/3-x/3TiO3 (x = 0.35 and 0.5) anode materials with a perovskite structure were investigated and compared with the electrochemical characteristics of Li4Ti5O12 with a layered spinel structure.


Smith K., Wang C.-Y. Power and Thermal Characterization of a Lithium-Ion Battery Pack for Hybrid-Electric Vehicles. J. Power Sources. 2006. 160 (1): 662.

Armand M., Tarascon J.-M. Building better batteries. Nature. 2008. 451 (7179): 652–657.

Samaras C., Meisterling K. Life cycle assessment of greenhouse gas emissions from plug-in hybrid vehicles: implications for policy. Environ. Sci. Technol. 2008. 42 (9): 3170–3176.

Goodenough J. B., Kim Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010. 22 (3): 587–603.

Wu H. M., Belharouak I., Abouimrane A., Sun Y.-K., Amine K. Surface modification of LiNi0.5Mn1.5O4 by ZrP2O7 and ZrO2 for lithium-ion batteries. J. Power Sources. 2010. 195 (9): 2909–2913.

Nitta N., Wu F., Lee J. T., Yushin G. Li-ion battery materials: present and future. Mater. Today. 2015. 18 (5): 252–264.

Fu R., Zhou X., Fan H., Blaisdell D., Jagadale A., Zhang X., Xiong R. Comparison of lithium-ion anode materials using an experimentally verified physics-based electrochemical model. Energies. 2017. 10 (12): 2174.

Winter M., Besenhard J. O., Spahr M. E., Novak P. Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 1998. 10 (10): 725–763;2-Z

Dell R. M. Batteries: fifty years of materials development. Solid State Ionics. 2000. 134 (1–2): 139–158.

Aurbach D., Zinigrad E., Cohen Y., Teller H. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid state ionics. 2002. 148 (3–4): 405–416.

Rho Y. H., Kanamura K. Li+ ion diffusion in Li4Ti5O12 thin film electrode prepared by PVP sol–gel method. J. Solid State Chem. 2004. 177 (6): 2094–2100.

Ouyang C. Y., Zhong Z. Y., Lei M. S. Ab initio studies of structural and electronic pro­perties of Li4Ti5O12 spinel. Electrochem. commun. 2007. 9 (5): 1107–1112.

Huang S., Wen Z., Zhu X., Yang X. Research on Li4Ti5O12 ∕ CuxO Composite Anode Materials for Lithium-Ion Batteries. J. Electrochem. Soc. 2005. 152 (7): A1301.

Wang Y.-Y., Hao Y.-J., Lai Q.-Y., Lu J.-Z., Chen Y.-D., Ji X.-Y. A new composite material

Li4Ti5O12–SnO2 for lithium-ion batteries. Ionics (Kiel). 2008. 14: 85–88.

Sivashanmugam A., Gopukumar S., Thirunaka­ran R., Nithya C., Prema S. Novel Li4Ti5O12/Sn

nano-composites as anode material for lithium ion batteries. Mater. Res. Bull. 2011. 46 (4): 492–500.

Li C. C., Li Q. H., Chen L. B., Wang T. H. A facile titanium glycolate precursor route to mesoporous Au/Li4Ti5O12 spheres for high-rate lithium-ion batteries. ACS Appl. Mater. Interfaces. 2012. 4 (3): 1233–1238.

Liu Z., Zhang N., Wang Z., Sun K. Highly dispersed Ag nanoparticles (< 10 nm) deposited on nanocrystalline Li4Ti5O12 demonstrating high-rate charge/discharge capability for lithium-ion battery. J. Power Sources. 2012. 205: 479–482.

Wang Y., Liu H., Wang K., Eiji H., Wang Y., Zhou H. Synthesis and electrochemical performance of nano-sized Li4Ti5O12 with double surface modification of Ti (III) and carbon. J. Mater. Chem. 2009. 19 (37): 6789–6795.

Jung H.-G., Kim J., Scrosati B., Sun Y.-K. Micron-sized, carbon-coated Li4Ti5O12 as high power anode material for advanced lithium batteries. J. Power Sources. 2011. 196 (18): 7763–7766.

Cheng L., Yan J., Zhu G.-N., Luo J.-Y., Wang C.-X., Xia Y.-Y. General synthesis of carbon-coated nanostructure Li4Ti5O12 as a high rate electrode material for Li-ion intercalation. J. Mater. Chem. 2010. 20 (3): 595–602.

Belharouak I., Koenig Jr G. M., Amine K. Electrochemistry and safety of Li4Ti5O12 and graphite anodes paired with LiMn2O4 for hybrid electric vehicle Li-ion battery applications. J. Power Sources. 2011. 196 (23): 10344–10350.

Kubiak P., Garcia A., Womes M., Aldon L., Oli­vier-Fourcade J., Lippens P.-E., Jumas J.-C. Phase transition in the spinel Li4Ti5O12 induced by lithium insertion: influence of the substitutions Ti/V, Ti/Mn, Ti/Fe. J. Power Sources. 2003. 119: 626–630.

Kanamura K., Akutagawa N., Dokko K. Three dimensionally ordered composite solid materials for all solid-state rechargeable lithium batteries. J. Power Sources. 2005. 146 (1–2): 86–89.

Zhang B., Huang Z.-D., Oh S. W., Kim J.-K. Improved rate capability of carbon coated

Li3.9Sn0.1Ti5O12 porous electrodes for Li-ion batteries. J. Power Sources. 2011. 196 (24): 10692–10697.

Dambournet D., Belharouak I., Ma J., Ami­ne K. Template-assisted synthesis of high packing density SrLi2Ti6O14 for use as anode in 2.7-V lithium-ion battery. J. Power Sources. 2011. 196 (5): 2871–2874.

Huang S., Wen Z., Gu Z., Zhu X. Preparation and cycling performance of Al3+ and F− co-substituted compounds Li4AlxTi5−xFyO12− y. Electrochim. Acta. 2005. 50 (20): 4057–4062.

Qi Y., Huang Y., Jia D., Bao S.-J., Guo Z: Preparation and characterization of novel spinel Li4Ti5O12− xBrx anode materials. Electrochim. Acta. 2009. 54 (21): 4772–4776.

Liang Y., Zhao C., Yuan H., Chen Y., Zhang W., Huang J., Yu D., Liu Y., Titirici M., Chueh Y. A review of rechargeable batteries for portable electronic devices. InfoMat. 2019. 1 (1): 6–32.

Jian Z., Hu Y., Ji X., Chen W. Nasicon-structured materials for energy storage. Adv. Mater. 2017. 29 (20): 1601925.

Wang D., Bie X., Fu Q., Dixon D., Bramnik N., Hu Y. S., Fauth F., Wei Y., Ehrenberg H., Chen G., Du, F. Sodium vanadium titanium phosphate electrode for symmetric sodium-ion batteries with high power and long lifespan. Nature communications, 2017. 8(1): 15888.

Kalbáč M., Zukalová M., Kavan L. Phase-pure nanocrystalline Li4Ti5O12 for a lithium-ion battery. J. solid state Electrochem. 2003. 8: 2–6.

Borghols W. J. H., Wagemaker M., Lafont U., Kelder E. M., Mulder F. M. Size effects in the Li4+xTi5O12 spinel. J. Am. Chem. Soc. 2009. 131 (49): 17786–17792.

Zhang N., Liu Z., Yang T., Liao C., Wang Z., Sun K. Facile preparation of nanocrystalline Li4Ti5O12 and its high electrochemical performance as anode material for lithium-ion batteries. Electrochem. commun. 2011. 13 (6): 654–656.

Augustyn V., Come J., Lowe M. A., Kim J. W., Taberna P.-L., Tolbert S. H., Abruña H. D., Simon P., Dunn B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013. 12 (6): 518–522.

Wei Z., Meng X., Yao Y., Liu Q., Wang C., Wei Y., Du F., Chen G. Exploration of Ca0.5Ti2(PO4)3@ carbon nanocomposite as the high-rate negative electrode for Na-Ion batteries. ACS Appl. Mater. Interfaces. 2016. 8 (51): 35336–35341.

Chen C., Wen Y., Hu X., Ji X., Yan M., Mai L., Hu P., Shan B., Huang Y. Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nat. Commun. 2015. 6 (1): 6929.

Wang R., Yao M., Niu Z. Smart supercapacitors from materials to devices. InfoMat. 2020. 2 (1): 113–125.

Belous A. G. Synthesis and electrophysical properties of novel lithium ion conducting oxides. Solid State Ionics. 1996. 90 (1–4): 193–196.

Alonso J. A., Sanz J., Santamaría J., León C., Várez A., Fernández-Díaz M. T. On the location of Li+ cations in the fast Li-cation conductor La0.5Li0.5TiO3 perovskite. Angew. Chemie. 2000. 112 (3): 633–635.;2-R

Nakayama M., Usui T., Uchimoto Y., Wakihara M., Yamamoto M. Changes in electronic structure upon lithium insertion into the A-site deficient perovskite type oxides (Li, La)TiO3. J. Phys. Chem. B. 2005. 109 (9): 4135–4143.

Lafta S. H. The relation of crystallite size and Ni 2+ content to ferromagnetic resonance properties of nano nickel ferrites. Journal of Magnetics. 2017. 22 (2): 188–195.

Libich J., Máca J., Vondrák J., Čech O., & Sedlaříková M. Irreversible capacity and rate-capability properties of lithium-ion negative electrode based on natural graphite. Journal of Energy Storage. 2017. 14: 383–390.

Hao Y.-J., Lai Q.-Y., Lu J.-Z., Liu D.-Q., Ji X.-Y. Influence of various complex agents on electrochemical property of Li4Ti5O12 anode material. J. Alloys Compd. 2007. 439 (1–2): 330–336.

Wu J., Chen L., Song T., Zou Z., Gao J., Zhang W., Shi S. A review on structural characteristics, lithium ion diffusion behavior and temperature dependence of conductivity in perovskite-type solid electrolyte Li3xLa2∕3−xTiO3. Funct. Mater. Lett. 2017. 10 (03): 1730002.

Inaguma Y., Liquan C., Itoh M., Nakamura T., Uchida T., Ikuta H., Wakihara M. High ionic conductivity in lithium lanthanum titanate. Solid State Commun. 1993. 86 (10): 689–693.

Okumura T., Ina T., Orikasa Y., Arai H., Uchimoto Y., Ogumi Z. Effect of average and local structures on lithium ion conductivity in La2/3−xLi3xTiO3. J. Mater. Chem. 2011. 21 (27): 10195–10205.

Varez A., Ibarra J., Rivera A., León C., Santamaría J., Laguna M. A., Sanjuán M. L., Sanz J. Influence of Quenching Treatments on Structure and Conductivity of the Li3xLa2/3-xTiO3 Series. Chem. Mater. 2003. 15 (1): 225–232.


Download data is not yet available.