IMPREGNATED FIBROUS CHEMISORBENTS FOR THE COLORIMETRIC DETECTION OF AMMONIA
№3

Keywords

colorimetry, fibrous chemisorbents, ammonia, acid-base indicators.

How to Cite

Bienkovska, T., Khoma, R., & Vatral, O. (2023). IMPREGNATED FIBROUS CHEMISORBENTS FOR THE COLORIMETRIC DETECTION OF AMMONIA . Ukrainian Chemistry Journal, 88(12), 175-188. https://doi.org/10.33609/2708-129X.88.12.2022.175-188

Abstract

The paper presents research results on the colorimetric behavior of impregnated fibrous chemisorbents (IFCS) of basic gases with visual identification of the dynamic absorption capacity “response” moment (IFCS-I) during the absorption of ammonia. Chemisorbents were obtained by impregnation of fibrous carriers with polybasic hydroxyl acid aqueous solutions with adding acid-base indicators (Ind). IFCS-I based on oxyethylenediphosphonic (IFCS-OEDPA-I), citric (IFCS-CA-I), and malic (IFCS-MA-I) acids were used. Azolithine (Az), lakmoid (LA), methyl orange (MO), methyl red (MR), Tropeolin OOO (TrOOO), Congo red (CoR), bromocresol green (BCG), broxylenol blue (BXB), bromophenol blue (BPB), bromophenol red (BPR), thymol blue (TB), xylenol orange (XO), and phenol red (PR) were used as acid-base indicators. The specificity of the changes in the colorimetric functions of IFCS-I during the absorption of NH3 by them was revealed. It was found that the color of the initial IFCS-I samples significantly depended not only on the structure of Ind, but also on the nature of the polybasic hydroxy acid being part of them. The colors of the samples based only on OEDPA (Ind = CoR, BCG, BPB), CA (Ind = CoR, TrOOO, BCG, BPB, BPR, XO) and some MA (TrOOO, BCG) are similar to the colors of aqueous solutions of Brönsted acids. The difference in the colors of the other samples from the colors of strong acid aqueous solutions with the same Ind is apparently due to  specific interactions between hydroxy acid anions and neutral dye forms. During “response” to NH3 only some IFCS-I samples based on OEDPA (Ind: MO, TrOOO, Az and BPR), CA (Ind: CoR, MR, MO, TrOOO, BXB, BPR, TB, PR) and MA (Ind: LA, MR, MO, Az, BXB, XO, TB, PR) are discolored in contrast to the behavior of SO2 indicator chemisorbents.

https://doi.org/10.33609/2708-129X.88.12.2022.175-188
№3

References

Bollinger N.J. NIOSH Respirator Selection Logic. Cincinnati: OH: DHHS, NIOSH, 2004. 39 p.

Favas G. End of Service Life Indicator (ESLI) for Respirator Cartridges. Part I: Literature Review. Fishermans Bend, DSTO, 2005. 45 p.

Kaptsov V.A., Chirkin A.V. Proper use of gas masks as prevention of occupational diseases. Hyg. Sanitation. 2013. (3): 42–45.

Kaptsov V.A., Chirkin A.V. Requirements to respiratory protection for workers (World practices reviewed). Health Risk Analysis. 2020. (4): 188–195.

doi: 10.21668/health.risk/2020.4.21 (in Russian).

Checky M., Frankel K., Goddard D., Johnson E., Thomas J.C., Zelinsky M., Javner C. Evaluation of a passive optical based end of service life indicator (ESLI) for organic vapor respirator cartridges. J. Occup. Environ. Hyg. 2016. 13(2): 112–120. doi: 10.1080/15459624.2015.1091956.

Khoma R.E., Ennan A.A.-A., Bienkovska T.S., Dlubovskii R.M., Vodzinskii S.V., Mykhailova T.V. The impregnated fibrous chemisorbents for colorimetric detection of the sulfur dioxi­de. Ukr. Chem. J. 2022. 87(1): 35–48. doi: 10.33609/2708-129X.88.01.2022.35-48.

Moon S.M., Lee S., Min H., Park S., Yoon S., Choi J.H., Yoon S.M., Jung B., Im T., Jeong C.-s.,

Kim B., Lee C.Y. Design and Integration of a Gas Sensor Module that Indicates the End of Service Life of a Gas Mask Canister. Adv. Mater. 2022. 7(3): 202100711.

doi: 10.1002/admt.202100711.

Ennan A.A.-A., Khoma R.E., Dlubovskii R.M., Abramova N.M. Composition for impregnating filter material. Patent UA 102156, IPC В01D 39/00, no u201413732, 26.12.2014 (in Ukrainian).

Ennan A.A.-A., Khoma R.E., Zakharenko Yu.S., Abramova N.M. Composition for impregnating filter material. Patent UA 133560, IPC В01D 39/00, no u201811398, 10.04.2019 (in Ukrainian).

Khoma R.E., Ennan A.A.-A., Bienkovska T.S., Bugova E.Yu., Osadchiy L.T., Menchuk E.M. HOCH2CH2NH2 – Tropeolin OOO - H2O system acid-basic properties in the presence of HCl, HClO4, H2SO4 and SO2H2O. Vіsn. Odes. nac. unіv., Hіm. 2021. 26(4): 26–38.

doi: 10.18524/2304-0947.2021.4(80).248292.

Khoma R.E., Bienkovska T.S., Bugova E.Yu., Osadchiy L.T., Vodzinskii S.V., Toporov S.V. SO2 – Am (KOH) – Tropeolin OOO – H2O (Am – ethanolamines, morpholine) systems acid-base properties Vіsn. Odes. nac. unіv., Hіm. 2022. 27(3): 43–52.

doi: 10.18524/2304-0947.2022.3(83).268625.

Lur'e Ju.Ju. Handbook of Analytical Chemistry. Moscow, Himija, 1989. 448 (in Russian).

Ennan A.А., Dlubovskiy R.M., Abramova N.N., Khoma R.E. Chemisorption of Sulfur Dioxide by Polyethylenepolyamine Impregnated Fibrous Materials. 2. The Study of Water Vapor Influence on Preadsorbtion SO2 Che­misorption by Fibrous Materials. Vіsn. Odes. nac. unіv., Hіm. 2014. 19(3): 20–30. doi: 10.18524/2304-0947.2014.3(51).40356 (in Russian).

National Library of Medicine. Available at https://pubchem.ncbi.nlm.nih.gov/

Center for Disease Contol and Prevention. Available at https://www.cdc.gov/

Purich D. The Inhibitor Index: A Desk Refe­rence on Enzyme Inhibitors, Receptor Anta­gonists, Drugs, Toxins, Poisons, Biologics, and Therapeutic Leads. 1st Ed. CRC Press, 2017: 1948 p.

Sabnis R.W. Handbook of acid-base indicators. Boca Raton: CRC Press, 2008. 416 p.

Zevackiy U.E., Samoylov D.V., Ruzanov D.О. Assessment of application field of photoemissive method for determination of pKa values for organic compounds. Bull. Saint Petersburg State Inst. Technol. 2010. (9): 54–59 (in Russian).

Aragoni M.C., Arca M., Crisponi G., Nurchi V.M., Silvagni R. Characterization of the ioni­zation and spectral properties of sulfonephthalein indicators. Correlation with substituent effects and structural features. Part II. Talanta. 1995. 42(8): 1157–1163.

doi: 10.1016/0039-9140(95)01559-t

Naseem K., Farooqi Z.H., Begum R., Irfan A. Removal of congo red dye from aqueous medium by its catalytic reduction using sodium borohydride in the presence of various inorganic nano-catalysts: A review. J. Clean Prod. 2018. 187: 296–307.

doi: 10.1016/j.jclepro.2018.03.209.

Snigur D.V. The use of tristimulus colorimetry functions in the study of the acid-base equilibria in solutions of organic compounds. Thesis of Ph.D dissertation, 25.00.02. Uzhgorod, 2017. 140 p. (іn Ukrainian).

Shokrollahi A., Gohari M., Ebrahimi F. Determination of Acidity Constants of p-Roso­lic acid and Bromoxylenol Blue by Solution Scanometric Method. Analyt. Bionalyt. Chem. Res. 2018. 5(1): 67–79.

doi: 10.22036/ABCR.2017.89026.1153

Schults E.V., Monogarova O.V., Oskolok K.V. Digital colorimetry: analytical possibilities and prospects of use. Moscow Univ. Chem. Bull. 2019. 74(2): 55–62 (in Russian).

Ennan A.A.-A., Dlubovskii R.M., Khoma R.E. Water role in the gases chemosorporation processes by sorption-active materials. Vіsn. Odes. nac. unіv., Hіm. 2021. 26(3): 6–28. doi: 10.18524/2304 0947.2021.3(79).240717 (in Ukrainian).

Ennan A. A.-A., Khoma R.E., Dlubovskii R.M., Zukharenko Yu.S., Benkovska T.S., Knysh I.M. Mono- and bifunctional impregnated fiber chemosorbents for respiratory purpose. Visn. Odes. nac. univ., Him. 2022. 27(1): 6–36. doi:10.18524/2304-0947.2021.4(80).248297 (in Ukrainian).

Khoma R.E., Abramova N.N., Kiro S.A., Knysh I.M. Respiratory organs protection from the ammonia action. Visn. Odes. nac. univ., Him. 2022. 27(2): 93–107.

doi: 10.18524/2304–0947.2022.2(82).264892

Downloads

Download data is not yet available.