ELECTROCHEMICAL BIOSENSORS FOR CONT­ROL OF LEAD CONTENT IN THE ENVIRONMENT. A REVIEW
№4

Keywords

electrochemical biosensors, lead, modification, metal-organic frameworks, layered double hydroxides.

How to Cite

Zinko, L., & Pletenets, Y. (2022). ELECTROCHEMICAL BIOSENSORS FOR CONT­ROL OF LEAD CONTENT IN THE ENVIRONMENT. A REVIEW. Ukrainian Chemistry Journal, 88(11), 55-87. https://doi.org/10.33609/2708-129X.88.11.2022.55-87

Abstract

The review presents different types of biosensors and their principles of operation that are currently used to detect heavy metals and lead. Biosensors are considered highly sensitive, specific, accurate, inexpensive and effective tools for the preliminary detection of one or more metals in sources of mixed pollution, especially in wastewater. The use of functional nanomaterials based on metal-organic frameworks and layered hydroxides allowed to miniaturize the design of biosensors and significantly improve their applicability for on-site analysis of target samples, which reduces the probability of any changes in the samples during transport to the laboratory. Also, these materials have long-term stability, improve the signal and response speed of electrochemical biosensors, and also increase their sensitivity and selectivity. An overview of the methods of manufacturing the active component of multilayer electrochemical sensors was conducted. The main methods of obtaining stable and sensitive to lead ions electrochemical systems are noted.Sensors and biosensors are powerful tools for accurate qualitative and quantitative analysis of a specific analyte and integration of biotechnology, microelectronics, and nanotechnology to fabricate miniaturized devices without loss of sensitivity, specificity, and cont­rol accuracy. The characteristic properties of biomolecule carriers significantly affect the sensitivity and selectivity of the device. The impact of carriers based on metal-organic frameworks and layered hydroxides on increasing the efficiency of modern lead biosensors due to the implementation of the enzyme inhibition mechanism was considered, and the me­thods of manufacturing the active component of multilayer electrochemical sensors were also reviewed. The perspective of using the coprecipitation method and the ion exchange method to obtain stable and sensitive lead ion electrochemical systems was noted. Thus, electrochemical biosensors can be considered as one of the most widely developed biosensors for the detection of lead ions, in which the presence of direct electron transfer from the recognition center to the electrode reduces the probability of unnecessary interference, which significantly increases their sensitivity and selectivity and enables the development of devices for in-mode monitoring real-time.

https://doi.org/10.33609/2708-129X.88.11.2022.55-87
№4

References

He Q., Miller E. W., Wong A. P., & Chang C. J. A Selective Fluorescent Sensor for Detecting Lead in Living Cells. Journal of the American Chemical Society. 2006. 128(29): 9316–9317.

Lu Y., Li X., Wang G. K., Tang, W. Biosens. Bioelectron. 2013. 39: 231−235.

Schneider E., Clark D. S. Cytochrome P450 (CYP) enzymes and the development of CYP biosensors. Biosensors and Bioelectronics. 2013. 39(1):1–13. doi:10.1016/j.bios.2012.05.043.

Durkalec M., Szkoda J., Kolacz R., Opalinski S., Nawrocka A., Zmudzki J. Bioaccumulation of lead, cadmium and mercury in roe deer and wild boars from areas with different levels of toxic metal pollution. Int. J. Environ. Res. 2015. 9: 205–212.

Evans E.H., Day J.A., Palmer C.D., Price W.J., Smith C.M.M., Tyson J.F. Atomic spectrometry update. Advances in atomic emission, absorption, and fluorescence spectrometry, and related techniques. J. Anal. At. Spectrom. 2005. 20: 562–590.

Montes-Bayon M., DeNicola K., Caruso J.A. Liquid chromatography-inductively coupled plasma mass spectrometry. J. Chromatogr. A. 2003. 1000: 457–476.

Zhang Y., Adeloju S.B. Coupling of non-selective adsorption with selective elution for novel in-line separation and detection of cadmium by vapour generation atomic absorption spectrometry. Talanta. 2015. 137: 148–155.

Harrington C.F., Clough R., Drennan-Harris L.R., Hill S.J., Tyson J.F. Atomic spectrometry update. Elemental speciation. J. Anal. At. Spectrom. 2011. 26: 1561–1595.

Asher S.A., Sharma A.C., Goponenko A.V., Ward M.M. Photonic crystal aqueous metal cation sensing materials. Anal. Chem. 2003. 75: 1676–1683.

Arunbabu D., Sannigrahi A., Jana T. Photonic crystal hydrogel material for the sensing of toxic mercury ions (Hg2+) in water. Soft Matter. 2011. 7: 2592–2599.

Hong W., Li W., Hu X., Zhao B., Zhang F., Zhang D. Highly sensitive colorimetric sensing for heavy metal ions by strong polyelectrolyte photonic hydrogels. J. Mater. Chem. 2011. 21: 17193–17201.

Zhang J.T., Cai Z., Kwak D.H., Liu H., Asher S.A. 2D Photonic Crystal Protein Hydrogel Coulometer for Sensing Serum Albumin Ligand Binding. Anal. Chem. 2014. 86: 4840–4847.

Yanagisawa H., Kurita R., Kamata T., Yoshioka K., Katod., Iwasawa A. Effect of the sp2/sp3 Ratio in a Hybrid Nanocarbon Thin Film Electrode for Anodic Stripping Voltammetry Fabricated by Unbalanced Magnetron Sputtering Equipment. Analytical Sciences. 2015. 31(7): 635–641. doi:10.2116/analsci.31.635.

Sengupta P., Pramanik K., Sarkar P. Simultaneous detection of trace Pb(II), Cd(II) and Hg(II) by anodic stripping analyses with glassy carbon electrode modified by solid phase synthesized iron-aluminate nano particles. Sensors and Actuators B: Chemical. 2020. 129052. doi:10.1016/j.snb.2020.129052

Dalavoy T.S., Wernette D.P., Gong M., Sweedler J.V., Lu Y., FlachsbartB.R.,Cropek D.M. Immobilization of DNAzyme catalytic beacons on PMMA for Pb2+ detection. Lab Chip. 2008. 8: 786–793.

Wang H.-B., Wang L., Huang K.-J., Xu S.-P., Wang H.-Q., Wang L.-L., Liu Y.-M. A highly sensitive and selective biosensing strategy for the detection of Pb2+ ions based on GR-5 DNAzyme functionalized AuNPs. New Journal of Chemistry. 2013. 37(8): 2557.

doi:10.1039/c3nj00328k.

Lan T., Furuya K., Lu Y. A highly selective lead sensor based on a classic lead DNAzyme. Chemical Communications. 2010. 46(22): 3896.

doi:10.1039/b926910j.

Zhuang J., Fu L., Xu M., Zhou Q., Chen G., Tang D. DNAzyme-Based Magneto-Controlled Electronic Switch for Picomolar Detection of Lead (II) Coupling with DNA-Based Hybridization Chain Reaction. Biosens. Bio­electron. 2013. 45: 52–57.

doi:10.1016/j.bios.2013.01.039.

Zhu X., Lin Z.Y., Chen L.F., Qiu B., Chen G.A. A sensitive and specific electrochemiluminescent sensor for lead based on DNAzyme. Chem. Commun. 2009: 6050–6052.

doi: 10.1039/b911191c.

Wang Y., Irudayaraj J. A SERS DNAzyme biosensor for lead ion detection. Chemical Communications. 2011. 47(15): 4394−4396.

doi:10.1039/c0cc04140h.

Liu J., Lu Y. A Colorimetric Lead Biosensor Using DNAzyme-Directed Assembly of Gold Nanoparticles. Journal of the American Chemical Society. 2003. 125(22): 6642–6643.

doi:10.1021/ja034775u.

Wei H., Li B., Li J., Dong S., Wang, E. DNAzyme-based colorimetric sensing of lead (Pb2+) using unmodified gold nanoparticle probes. Nanotechnology. 2008. 19(9): 1–5.

doi:10.1088/0957-4484/19/9/095501.

Shen L., Chen Z., Li Y., He S., Xie S., Xu X. Electrochemical DNAzyme Sensor for Lead Based on Amplification of DNA−Au Bio-Bar Codes. Analytical Chemistry. 2008. 80(16): 6323–6328. doi:10.1021/ac800601y.

Yang X., Xu J., TangX., Liu H., Tian D. A novel electrochemical DNAzyme sensor for the amplified detection of Pb2+ ions. Chemical Communications. 2010. 46(18): 3107.

doi:10.1039/c002137g.

Tang S.R., Tong P., Li H., Tang J., Zhang L. Ultrasensitive electrochemical detection of Pb2+ based on rolling circle amplification and quantum dots tagging. Biosens. Bioelectron. 2013. 42: 608–611. doi: 10.1016/j.bios.2012.10.073.

Zhang P., Wu X., Yuan R., Chai Y. An “Off–On” Electrochemiluminescent Biosensor Based on DNAzyme-Assisted Target Recycling and Rolling Circle Amplifications for Ultrasensitive Detection of microRNA. Analytical Chemistry. 2015. 87(6): 3202–3207.

doi:10.1021/ac504455z.

Pelossof G., Tel-Vered R., Willner I. Amplified Surface Plasmon Resonance and Electrochemi­cal Detection of Pb2+ Ions Using the Pb2+-Dependent DNAzyme and Hemin/G-Quadruplex as a Label. Analytical Chemistry. 2012. 84(8): 3703–3709. doi:10.1021/ac3002269.

Li F., Yang L., Chen M., Qian Y., Tang B. A novel and versatile sensing platform based on HRP-mimicking DNAzyme-catalyzed tem­plate-guided deposition of polyaniline. Biosensors and Bioelectronics. 2013. 41: 903–906.

doi:10.1016/j.bios.2012.09.048.

Wulff G. Enzyme-like Catalysis by Molecularly Imprinted Polymers. Chemical Reviews. 2002. 102(1): 1–28. doi:10.1021/cr980039a.

Wei H., Wang E. Nanomaterials with enzyme-like characteristics (nanozymes): next-­generation artificial enzymes. Chemical Society Reviews. 2013.42(14): 6060.

doi:10.1039/c3cs35486e.

Liu T., Xue Q., Jia J., Liu F., Zou S., Tang R. New insights into the effect of pH on the mechanism of ofloxacin electrochemical detection in aqueous solution. Physical Chemistry Chemical Physics. 2019. 21. 16282–16287.

doi:10.1039/c9cp03486b.

Liu Y., Xue Q., Chang C., Wang R., Liu Z., He L. Recent progress regarding electrochemical sensors for the detection of typical pollutants in water environments. Analytical Sciences. 2022. 38(1): 55–70. doi: 10.2116/analsci.21SAR12.

Zhou G., Pan J. Polarographic and voltammetric behaviour of ofloxacin and its analytical application. AnalyticaChimica Acta.1995. 307(1): 49–53. doi:10.1016/0003-2670(95)00028-x.

Reddy G. Estimation of cephalosporin antibiotics by differential pulse polarography. Talanta.1997. 44(4): 627–631.

doi:10.1016/s0039-9140(96)02081-4.

Rizk M. Differential pulse polarographic determination of ofloxacin in pharmaceuticals and biological fluids. Talanta.1998. 46(1): 83–89. doi:10.1016/s0039-9140(97)00249-x.

Niwa О., Ohta S-, Takahashi S., Zhang Z., Kamata T. Hybrid Carbon Film Electrodes for Electroanalysis. Analytical Science. 2021. 1: 37–47. doi:10.2116/analsci.20SAR15.

Feng L., Xue Q., Liu F., Cao Q., Feng J., Yang L., Zhang F. Voltammetric determination of ofloxacin by using a laser-modified carbon glassy electrode. MicrochimicaActa. 2020. 187(1): 1–8. doi:10.1007/s00604-019-4065-6.

Chen T., Liu Y., Lu J., Xing J., Li J., Liu T., Xue Q. Highly efficient detection of ciprofloxacin in water using a nitrogen-doped carbon electrode fabricated through plasma modification. New Journal of Chemistry. 2019.

doi:10.1039/c9nj03511g.

Ueda A., Kato D., Kurita R., Kamata T., Inokuchi H., Umemura S., Niwa O. Efficient Direct Electron Transfer with Enzyme on a Nanostructured Carbon Film Fabricated with a Maskless Top-Down UV/Ozone Process. Journal of the American Chemical Society. 2011. 133(13): 4840–4846.

doi:10.1021/ja108614d.

Xue Q., Kato D., KamataT., Guo Q., You T., Niwa O. Improved Direct Electrochemistry for Proteins Adsorbed on a UV/Ozone-Treated Carbon Nanofiber Electrode. Analytical Sciences. 2013. 29(6): 611–618.

doi:10.2116/analsci.29.611.

Xue Q., Kato D., Kamata T., Guo Q., You T., Niwa O. Human cytochrome P450 3A4 and a carbon nanofiber modified film electrode as a platform for the simple evaluation of drug metabolism and inhibition reactions. The Analyst. 2013. 138(21): 6463. doi:10.1039/c3an01313h.

Zhu Y., Li C., Wang L., Chen M., Yu J., LiuQ., Chen, X. Differential Pulse Voltammetry Determination of Ofloxacin in Human Serum and Urine Based on a Novel Tryptophan‐graphene Oxide‐Carbon Nanotube Electrochemical Sensor. Electroanalysis. 2019. 31: 1446.

doi:10.1002/elan.201900036.

Wen W., Zhao D.-M., Zhang X.-H., Xiong H.-Y., Wang S.-F., Chen W., Zhao Y.-D. One-step fabrication of poly(o-aminophenol)/multi-walled carbon nanotubes composite film modified electrode and its application for levo­floxacin determination in pharmaceuticals. Sensors and Actuators B: Chemical.2012. 174: 202–209. doi:10.1016/j.snb.2012.08.010.

Chen T.-S., Huang K.-L., Chen J.-L. An Electrochemical Approach to Simultaneous Determination of Acetaminophen and Ofloxacin. Bulletin of Environmental Contamination and Toxicology.2012. 89(6): 1284–1288.

doi:10.1007/s00128-012-0833-2.

Li J., Shao Y., Yin W., Zhang Y. A strategy for improving the sensitivity of molecularly imprinted electrochemical sensors based on ca­ta­lytic copper deposition. AnalyticaChimicaActa. 2014. 817. 17–22.

doi:10.1016/j.aca.2014.02.003.

Li L., Zhao W., Luo L., Liu X., Bi X., Li J., Jiang P., You T. Electroanal. 2021. in press.

Dang J., Cui H., Li X., Zhang J. Anal. Sci. 2019. 35: 979.

Song J., Huang M., Jiang N., Zheng S., Mu T., MengL.,Chen G. Ultrasensitive detection of amoxicillin by TiO2-g-C3N4@AuNPs impedimetricaptasensor: Fabrication, optimization, and mechanism. Journal of Hazardous Materials. 2020. 391: 122024.

doi:10.1016/j.jhazmat.2020.122024.

Muthaiah A., Subbarayan S., Chen S. M., Chen T.-W., Zheng X.-H. Facile synthesis of ultrathin NiSnO3 nanoparticles for enhanced electrochemical detection of antibiotic drug in water bodies and biological samples. New Journal of Chemistry. 2020.

doi:10.1039/d0nj01375g.

Salihu S., Yusof N. A., Mohammad F., Abdullah J., Al-Lohedan H. A. Nickel Nanoparticle-Modified Electrode for the Electrochemi­cal Sensory Detection of Penicillin G in Bovine Milk Samples. Journal of Nanomaterials. 2019. 1–11. doi:10.1155/2019/1784154.

Khadem M., Faridbod F., Norouzi P., RahimiForoushani A., Ganjali M. R., Shahtaheri S. J., Yarahmadi R. Modification of Carbon Paste Electrode Based on Molecularly Imprinted Polymer for Electrochemical Determination of Diazinon in Biological and Environmental Samples. Electroanalysis.2016. 29(3): 708–715.

doi:10.1002/elan.201600293.

Andreescu S., Marty J.-L. Twenty years research in cholinesterase biosensors: From basic research to practical applications. Biomolecular Engineering. 2006. 23(1): 1–15.

doi:10.1016/j.bioeng.2006.01.001.

March G., Nguyen T., Piro B. Modified Electrodes Used for Electrochemical Detection of Metal Ions in Environmental Analysis. Biosensors. 2015. 5(2): 241–275.

doi:10.3390/bios5020241.

Evtugyn G. Sensitivity and selectivity of electrochemical enzyme sensors for inhibitor determination. Talanta. 1998. 46(4): 465–484.

doi:10.1016/s0039-9140(97)00313-5.

Zhylyak G. A., Dzyadevich S. V., Korpan Y. I., Soldatkin A. P., El’skaya A. V. Application of urease conductometric biosensor for heavy-­metal ion determination. Sensors and Actuators B: Chemical. 1995. 24(1–3): 145–148.

doi:10.1016/0925-4005(95)85031-7.

Verma N., Singh M. Biosensors for heavy me­tals. BioMetals. 2005. 18(2): 121–129.

doi:10.1007/s10534-004-5787-3.

MohammadiH. Copper-modified gold electrode specific for monosaccharide detection Use in amperometric determination of phe­nylmercury based on invertase enzyme inhibition. Talanta. 2004. 62(5): 951–958.

Mohammadi H., Amine A., Cosnier S., Mousty C. Mercury–enzyme inhibition assays with an amperometric sucrose biosensor based on a trienzymatic-clay matrix. AnalyticaChimicaActa. 2005. 543(1–2): 143–149.

doi:10.1016/j.aca.2005.04.014.

Bertocchi P., Ciranni E., Compagnone D., Magearu V., Palleschi G., Pirvutoiu S., Valvo, L. Flow injection analysis of mercury(II) in pharmaceuticals based on enzyme inhibition and biosensor detection. Journal of Pharmaceutical and Biomedical Analysis. 1999. 20(1–2): 263–269. doi:10.1016/s0731-7085(99)00032-1.

Ilangovan R., Daniel D., Krastanov A., Zacha­riah C., Elizabeth, R. Enzyme based Biosensor for Heavy Metal Ions Determination. Bio­technology & Biotechnological Equipment. 2006. 20(1): 184–189.

Ghosh D., Dutta K., Bhattacharyay D., Sa­kar P. Amperometric Detection of Pesticides Using Polymer Electrodes. Environmental Monitoring and Assessment. 2006. 119(1–3): 481–489. doi:10.1007/s10661-005-9038-z.

Karube I., & Nomura Y. Enzyme sensors for environmental analysis. Journal of Molecular Catalysis B: Enzymatic. 2000. 10(1–3): 177–181. doi:10.1016/s1381-1177(00)00125-9.

Pershina K. D., Khodykina M. O., Kazdobin K. A. Analysis of the activity of immobilized enzyme preparations of black horseradish using electrochemical impedance spectroscopy. Surface Engineering and Applied Electrochemistry. 2015. 51(6): 572–580.

doi:10.3103/s1068375515060095.

Khodykina M. O., Pershina K. D., Kazdobin K. A., Trunova E. K. Immobilization of enzyme preparations from Raphanussativus L. var. niger on natural bentonite and bentonite modified by phosphate ions. Surface Engineering and Applied Electrochemistry. 2017. 53(2): 196–201.doi:10.3103/s1068375517020065.

Pershina K. D., Khodykina M. O., Kazdobin K. A., Shulga, S. V. Voltammetric responses of black radish enzyme preparation immobilized on kaolin and aerosil. Surface Engineering and Applied Electrochemistry.2017. 53(6): 542–550. doi:10.3103/s1068375517060060.

Hosseinpour D., Mohammadi N., Moradian S. A simple method for characterizing the surface properties of polymers. Polymer Testing.2003. 22(7): 727–731.

doi:10.1016/s0142-9418(02)00143-5.

Koncki R., Rudnicka K., Tymecki Ł. Flow injection system for potentiometric determination of alkaline phosphatase inhibitors. AnalyticaChimica Acta.2006. 577(1): 134–139.

doi:10.1016/j.aca.2006.05.100.

Satoh I., TokoroY., Suzuki K., Yamada Y., Proc. East Asia Conf. Chem. Sens. 1993. 235–238.

Satoh I., Iijima Y. Multi-ion biosensor with use of a hybrid-enzyme membrane. Sensors and Actuators B: Chemical. 1995. 24(1–3): 103–106. doi:10.1016/0925-4005(95)85022-8.

Kukla A., Kanjuk N., Starodub N., Shirshov Y. Multienzyme electrochemical sensor array for determination of heavy metal ions. Sensors and Actuators B: Chemical. 1999. 57(1–3): 213–218.

doi:10.1016/s0925-4005(99)00153-7.

Veselova I. T. Shekhovtsova. Visual determination of mercury(II) using horseradish peroxidase polymerized on polyurethane foam. Anal. Chim. Acta. 1999. 392:151–158.

Veselova I. A., Shekhovtsova T. N. Visual determination of lead(II) by inhibition of alkaline phosphatase immobilized on polyurethane foam. AnalyticaChimicaActa. 2000. 413(1–2): 95–101. doi:10.1016/s0003-2670(00)00719-4.

Jeanty G., Ghommidh C., Marty, J. Automated detection of chlorpyrifos and its metabolites by a continuous flow system-based enzyme sensor. AnalyticaChimicaActa. 2001. 436(1): 119–128.

doi:10.1016/s0003-2670(01)00898-4.

Trojanowicz M., Compagnone D., Gonçales C., Jonca Z., Palleschi G. Limitations in the Analytical Use of Invertase Inhibition for the Screening of Trace Mercury Content in Environmental Samples. Analytical Sciences. 2004. 20(6): 899–904. doi:10.2116/analsci.20.899.

Bagal D., Karve M. S. Entrapment of plant invertase within novel composite of agarose–guar gum biopolymer membrane. AnalyticaChimicaActa. 2006. 555(2): 316–321.

doi:10.1016/j.aca.2005.09.010.

Bagal D. S., Vijayan A., Aiyer R. C., Karekar R. N., Karve M. S. Fabrication of sucrose bio­sensor based on single mode planar optical waveguide using co-immobilized plant invertase and GOD. Biosensors and Bioelectronics. 2007. 22(12): 3072–3079.

doi:10.1016/j.bios.2007.01.008

Qin F.-X., Jia S.-Y., Wang F.-F., Wu S.-H., Song J., Liu Y. Hemin@metal–organic framework with peroxidase-like activity and its application to glucose detection. Catalysis Science & Technology. 2013. 3(10): 2761.

doi:10.1039/c3cy00268c.

Ai L., Li L., Zhang C., Fu J., Jiang J. MIL-53(Fe): A Metal-Organic Framework with Intrinsic Peroxidase-Like Catalytic Activity for Colo­ri­metric Biosensing. Chemistry – A European Journal. 2013. 19(45): 15105–15108.

doi:10.1002/chem.201303051.

Zhang J.-W., Zhang H.-T., Du Z.-Y., Wang X., Yu S.-H., Jiang H.-L. Water-stable metal–orga­nic frameworks with intrinsic peroxidase-like catalytic activity as a colorimetric biosensing platform. Chem. Commun.2014. 50(9): 1092–1094. doi:10.1039/c3cc48398c.

Zhao M., Ou S., Wu C.-D. Porous Metal–Organic Frameworks for Heterogeneous Biomimetic Catalysis. Accounts of Chemical Research. 2014. 47(4): 1199–1207.

doi:10.1021/ar400265x.

GanguK. K., MaddilaS., MukkamalaS. B., JonnalagaddaS. B. A review on contemporary metal–organic framework materials. Inorga­nicaChimicaActa. 2016. 446: 61–74.

Chen Y., Hoang T., Ma S. Biomimetic Cata­lysis of a Porous Iron-Based Metal–Metalloporphyrin Framework. Inorganic Chemistry. 2012. 51(23): 12600–12602.

doi:10.1021/ic301923x.

Zhang M. W., Gu Z. Y., Bosch M., Perry Z., Zhou H. C. Coord. Chem. Rev. 2015. 293−294: 327−3564.

Gao W.-Y., Chrzanowski M., Ma S. Metal–­me­talloporphyrin frameworks: a resurging class of functional materials. Chem. Soc. Rev.2014. 43(16): 5841–5866.

doi:10.1039/c4cs00001c.

Lee D. H., Kim S., Hyun M. Y., Hong J.-Y., Huh S., Kim C., Lee, S. J. Controlled growth of narrowly dispersed nanosize hexagonal MOF rods from Mn(iii)–porphyrin and In(NO3)3 and their application in olefin oxidation. Chemical Communications. 2012. 48(44): 5512. doi:10.1039/c2cc31075a.

Feng D., Chung W.-C., Wei Z., Gu Z.-Y., Jiang H.-L., Chen Y.-P., Zhou H.-C. Construction of Ultrastable Porphyrin Zr Metal–Orga­nic Frameworks through Linker Elimination. Journal of the American Chemical Society. 2013. 135(45): 17105–17110.

doi:10.1021/ja408084j.

Ling P., Lei J., Zhang L., Ju H. Porphyrin-Encapsulated Metal–Organic Frameworks as Mimetic Catalysts for Electrochemical DNA Sensing via Allosteric Switch of Hairpin DNA. Analytical Chemistry. 2015. 87(7): 3957–3963.

doi:10.1021/acs.analchem.5b00001.

Ling P., Lei J., Ju H. Porphyrinic metal-organic framework as electrochemical probe for DNA sensing via triple-helix molecular switch. Biosensors and Bioelectronics. 2015. 71. 373–379.

doi:10.1016/j.bios.2015.04.046.

Cui L., Wu J., Li J., Ju H. Electrochemical Sensor for Lead Cation Sensitized with a DNA Functionalized Porphyrinic Metal–Organic Framework. Analytical Chemistry. 2015. 87(20): 10635–10641.

doi:10.1021/acs.analchem.5b03287.

Anantharaj S., Karthick K., Kundu S. Evolution of layered double hydroxides (LDH) as high performance water oxidation electroca­talysts: A review with insights on structure, activity and mechanism. Materials Today Energy. 2017. 6: 1–26.

doi:10.1016/j.mtener.2017.07.016.

PershinaE., Karpushin N., Kazdobin K. Aluminosilicate Conductivity at the Presence of Water. Surface Engineering and Applied Electrochemistry. 2010. 4(46): 339–347.

Auerbach S.M., Carrado K.A., Dutta P.K. Handbook of Layered Materials. CRC Press, 2004.

Hofmeister W., Platen, H. V. Crystal Chemistry and Atomic Order in Brucite-related Double-layer Structures. Crystallography Reviews. 1992. 3(1): 3–26.

doi:10.1080/08893119208032964.

Vyatkina O. V., Pershina E. D., Kazdobyn K. A. The nature of acid-base and catalytic activity of montmorillonite in an aqueous medium. Ukrainian chemistry journal. 2006. 19–24 (in Russian).

Sajid M., Basheer C. Layered double hydroxi­des: emerging sorbent materials for analy­tical extractions, TrAC Trends. Anal. Chem. 2016.75. 174–182.

doi:10.1016/j.trac.2015.06.010.

He S., An Z., Wei M., Evans D.G, Duan X. La­yered double hydroxide-based catalysts: nanostructure design and catalytic performance, Chem. Commun. 2013. 49. 5912.

Kalali E.N., Wang X., Wang D.-Y. Functionali­zed layered double hydroxide-based epoxy nanocomposites with improved flame retardancy and mechanical properties. J. Mater. Chem. A. 2015. 6819–6826. doi:10.1039/C5TA00010F.

Nicotera I., Angjeli K., Coppola L., Enotiadis A., Pedicini R., Carbone A., Gournis D. Composite polymer electrolyte membranes based on Mg–Al layered double hydroxide (LDH) platelets for H2/air-fed fuel cells. Solid State Ionics. 2015. 276: 40–46.

Li L., Gu W., Chen J., Chen W. Co-delivery of siRNAs and anti-cancer drugs using layered double hydroxide nanoparticles. Biomaterials. 2014. 35: 3331–3339.

Li C., Wei M., Evans D.G., Duan X. Laye­red double hydroxide-based nanomaterials as highly efficient catalysts and adsorbents. Small. 2014. 10: 4469–4486.

doi:10.1002/smll.201401464.

Sajid M. Porous membrane protected micro-solid-phase extraction: a review of features, advancements and applications. Anal. Chim. Acta. 2017. 965: 36–53.

doi:10.1016/j.aca.2017.02.023.

Sajid M., Basheer C., Daud M., A. Alsharaa A. Evaluation of layered double hydroxi­de/graphene hybrid as a sorbent in membrane-protected stir-bar supported micro solid-phase extraction for determination of organochlorine pesticides in urine samples. J. Chromatogr. 2017. 1489. 1–8.

doi:10.1016/j.chroma. 2017.01.089.

Wang Q., O’Hare D. Recent advances in the synthesis and application of layered double hyd­roxide (LDH) nanosheets. Chem. Rev. 2012. 112: 4124–4155. doi:10.1021/cr200434c.

Mousty C., Prévot V. Hybrid and biohybrid layered double hydroxides for electrochemical analysis.Anal. Bioanal. Chem. 2013. 405: 3513–3523. doi:10.1007/s00216-013-6797-1.

Tonelli D., ScavettaE.,Giorgetti M. Layered-double-hydroxide-modified electrodes: electroanalytical applications. Anal. Bioanal. Chem. 2013. 405: 603–614.

doi:10.1007/s00216-012-6586-2.

ZhanT., WangX., Li X., Song Y., Hou W. Che­mi­cal hemoglobin immobilized in exfoliated Co 2 Al LDH-graphene nanocomposite film: direct electrochemistry and electrocatalysis toward trichloroacetic acid. Sens. Actuators B. Chem. 2016. 228: 101–108.

doi:10.1016/j.snb.2015.12.095.

Xu Y., Liu X., Ding Y., Luo L., Wang Y., Zhang Y. Preparation and electrochemical investigation of a nano-structured material Ni2 + /MgFe layered double hydroxide as a glucose biosensor. Appl. Clay Sci. 2011. 52: 322–327. doi:10.1016/j.clay.2011.03.011.

Song W., Yin W., Zhang Z., He P., Yang X., Zhang X. A DNA functionalized porphyrinic metal-organic framework as a peroxidase mimicking catalyst for amperometric determination of the activity of T4 polynucleotide kinase. MicrochimicaActa. 2019. 186(3): 1–8.

doi:10.1007/s00604-019-3269-0.

Baig N., Sajid M. Applications of layered double hydroxides based electrochemical sensors for determination of environmental pollu­tants: A review. Trends in Environmental Analytical Chemistry. 2017. 16: 1–15.

doi:10.1016/j.teac.2017.10.003.

Inayat A., Klumpp M., Schwieger W. The urea method for the direct synthesis of ZnAl layered double hydroxides with nitrate as the interlayer anion. Appl. Clay Sci. 2011. 51: 452–459.

doi:10.1016/j.clay.2011.01.008.

Costantino U., Marmottini F., Nocchetti M., Vivani R. New synthetic routes to hydrotalcite-like compounds – characterisation and properties of the obtained materials. Eur. J. Inorg. Chem. 1998. 143: 1439–1446.

Xu R.-X., Yu X.-Y., Gao C., Liu J.-H, Compton R.G., Huang X.-J. Enhancing selectivity in stripping voltammetry by different adsorption behaviors: the use of nanostructured Mg–Al-layered double hydroxides to detect Cd(II). Analyst. 2013.138: 1812.

doi:10.1039/c3an36271j.

Kong X., Rao X., Han J., Wei M., Duan X. Layer-by-layer assembly of bi-protein/ layered double hydroxide ultrathin film and its electrocatalyticbehavior for catechol. Biosens. Bioelectron. 2010. 26. 549–554.

Bin Han J., Lu J., Wei M., Wang L., Duan X. Heterogeneous ultrathin films fabricated by alternate assembly of exfoliated layered double hydroxides and polyanion. Chem. Commun. 2008. 5188–5190. doi:10.1039/b807479h.

Chen X., Fu C., Wang Y., Yang W., Evans D.G. Direct electrochemistry and electrocatalysis based on a film of horseradish peroxidase intercalated into Ni-Al layered double hydroxi­de nanosheets. Biosens. Bioelectron. 2008. 24: 356–361. doi:10.1016/j.bios.2008.04.007.

Goh K.-H., Lim T.-T., Dong Z. Application of layered double hydroxides for removal of oxy­anions: a review. Water Res. 2008.42: 1343–1368. doi:10. 1016/j.watres.2007.10.043.

Ogawa M., Asai S., Hydrothermal synthesis of layered double hydroxide – deoxycholate intercalation. Chem. Mater. 2000.12: 3253–3255.

Dong J., Fang Q., He H., Zhang Y., Xu J. Electrochemical sensor based on EDTA intercalated into layered double hydroxides of magnesium and aluminum for ultra trace level detection of lead (II). Microchim. Acta. 2015.182: 653–659. doi:10.1007/s00604-014-1369-4.

Asadpour-Zeynali K., Amini R. A novel vol­tammetric sensor for mercury(II) based on mercaptocarboxylic acid intercalated la­ye­red double hydroxide nanoparticles modified electrode.Sens. Actuators B Chem. 2017. 246:961–968. doi:10.1016/j.snb.2017.02.141.

Theiss F.L., Ayoko G.A., Frost R.L. Applied surface science synthesis of layered double hyd­roxi­des containing Mg2+, Zn 2+, Ca2+ and Al 3+ layer cations by co-precipitation me­thods – a review. Appl. Surf. Sci.2016. 383: 200–213.

doi:10.1016/j.apsusc.2016.04.150.

Wang Y., Wang Z., Rui Y., Li M. Horseradish peroxidase immobilization on carbon nano­dots/CoFe layered double hydroxides: direct electrochemistry and hydrogen peroxide sensing. Biosens. Bioelectron. 015. 64: 57–62.

doi:10. 1016/j.bios.2014.08.054.

Yin H., Cui L., Ai S., Fan H., Zhu L. Electrochemical determination of bisphenol A at

Mg-Al-CO3 layered double hydroxide modified glassy carbon electrode. Electrochim. Acta. 2010. 55: 603–610.

doi:10.1016/j.electacta.2009. 09.020.

Wang J., Cui L., Yin H., Dong J., Ai S. Determination of hydrogen peroxide based on calcined layered double hydroxide-modified glassy carbon electrode in flavored beverages. J. Solid State Electrochem. 2012.16: 1545–1550.

doi:10. 1007/s10008-011-1551-0.

Khenifi A., Derriche Z., Forano C., Prevot V., Mousty C., Scavetta E., Ballarin B. Glyphosate and glufosinate detection at electrogeneratedNiAl-LDH thin films. Anal. Chim. Acta. 2009. 654: 97–102. doi:10. 1016/j.aca.2009.09.023.

Zhan T., Song Y., Li X., Hou W. Electrochemical sensor for bisphenol A based on ionic liquid functionalized Zn-Al layered double hydroxi­de modified electrode. Mater. Sci. Eng. 2016. 64: 354–361. doi:10.1016/j.msec.2016.03.093.

LiS.-S., Jiang M., Jiang T.-J., Liu J.-H., Guo Z., Huang X.-J. Competitive adsorption behavior toward metal ions on nano-Fe/Mg/Ni ternary layered double hydroxide proved by XPS: evi­dence of selective and sensitive detection of Pb(II). J. Hazard. Mater. 2017. 338: 1–10.

Li M., Ni F., Wang Y., Xu S., Zhang D., Wang L. LDH modified electrode for sensitive and facile determination of iodate. Appl. Clay Sci. 2009. 46: 396–400. doi:10.1016/j.clay.2009.10.003.

Yang Z., Tjiu W.W., Fan W., Liu T. Electrode­positing Ag nanodendrites on layered double hydroxides modified glassy carbon electrode: novel hierarchical structure for hydrogen peroxide detection. Electrochim. Acta. 2013. 90: 400–407. doi:10.1016/j.electacta.2012.12.038.

Asif M., Liu H., Aziz A., Wang H., Wang Z., Ajmal M., Xiao F. Core-shell iron oxide-la­yered double hydroxide: high electrochemical sensing performance of H2O2 biomarker in live cancer cells with plasma therapeutics. Biosens. Bioelectron. 2017. 97. 352–359.

Gong J., Wang L., Miao X., Zhang L. Efficient stripping voltammetric detection of organophosphate pesticides using NanoPt intercalated Ni/Al layered double hydroxides as so­lid-phase extraction. Electrochem. Commun. 2010. 12: 1658–1666.

Liang H., Miao X., Gong J. One-step fabrication of layered double hydroxides/ graphene hybrid as solid-phase extraction for stripping voltammetric detection of methyl parathion. Electrochem. Commun. 2012. 20: 149–152.

Scavetta E., Mignani A., Prandstraller D., Tonelli D. Electrosynthesis of thin films of Ni, Al hydrotalcite like compounds.Chem. Mater. 2007. 19: 4523–4529.

Bagal-Kestwal D., Karve M. S., Kakade B., & Pillai V. K. Invertase inhibition based electrochemical sensor for the detection of heavy metal ions in aqueous system: Application of ultra-microelectrode to enhance sucrose biosensor’s sensitivity. Biosensors and Bioelectro­nics. 2008. 24(4): 657–664.

doi:10.1016/j.bios.2008.06.027.

Downloads

Download data is not yet available.