THE NATURE AND CONDITIONS OF FORMATION OF THERMOELECTRIC PROPERTIES IN NATURAL AND ARTIFICIAL LAYERED ALUMOSILICATES
№2

Keywords

layered aluminosilicate, modification, composite material, Seebeck coefficient, structure

How to Cite

Boychuk, O. (2022). THE NATURE AND CONDITIONS OF FORMATION OF THERMOELECTRIC PROPERTIES IN NATURAL AND ARTIFICIAL LAYERED ALUMOSILICATES. Ukrainian Chemistry Journal, 88(10), 70-90. https://doi.org/10.33609/2708-129X.88.10.2022.70-90

Abstract

The review analyzes the physical and che­mi­cal properties of modified natural and artificial layered aluminosilicates, which form the basis for the emergence of thermoelectric properties in materials based on them. It represented the main methods of modification and analysis of structural and thermoelectric properties of these materials. Chemical modi­fication of layered aluminosilicates is carried out by the reaction of solid aluminosilicate with concentrated aqueous solutions of metal hydroxides of groups I and II, their silicates, or phosphoric acid. The products of such interaction are called geopolymer. This name used to describe the reaction of the transformation of amorphous aluminosilicate into crystalline products during the interaction the solid pro­duct with concentrated alkali solutions of me­tals from the groups I and II, or the formation of composites and gel systems. The change in particle size, acidity of the media and impurity exchangeable cations in layered aluminosilicates significantly affects its acid-base and catalytic properties in aqueous solutions. The use of aqueous solutions increases the effect of hydrolytic processes on the number of hydroxide groups in the composition of the mineral, which are responsible for the adsorption pro­perties and create the possibility of oxidative-destructive catalysis with the participation of the mineral. The ion-exchange capacity of layered aluminosilicates depends on the degree of their dispersion. The increasing degree of the Perdispersion level increases the ion-exchange capacity of the material. It is also possible to modify layered aluminosilicates with phosphoric acid, which can form polymers. Using phosphoric acid allows high temperatures over 900 C to change the electrical properties of minerals. The priority directions for strengthening the properties of heat-to-electricity conversion through the development of composite materials based on layered aluminosilicates using metal nanoparticles, silicon carbide, carbon, graphene, graphene-like materials, and metal oxides embedded in the aluminosilicate matrix have been established.

https://doi.org/10.33609/2708-129X.88.10.2022.70-90
№2

References

Synder G.J. &Toberer E.S. Complex thermoelectric materials. NatureMaterials. 2008. 7:105–114.

Xie W., Wang S., Zhu S., He J., Tang X., Zhang Q., &Tritt T. M. High performance Bi2Te3 nanocomposites prepared by single-element-melt-spinning spark-plasma sintering. Journal of Materials Science. 2013. 48(7): 2745–2760.

Hicks L.D. &Dresselhaus M.S. Thermoelectric figure of merit of a one-dimensional conductor.Phys. Rev. B. 1993. 47(24): 16631–16634.

Venkatasubramanian R., Siivola E., Colpitts T., &O'quinn B. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature. 2001. 413(6856): 597–602.

Uchida K., Takahashi S., Harii K., Ieda J., Koshibae W., Ando K., ... &Saitoh E. Observation of the spin Seebeck effect. Nature. 2008. 455(7214): 778–781.

Gunawan A., Lin C. H., Buttry D. A., Mujica V., Taylor R. A., Prasher R. S., & Phelan P. E. Liquid thermoelectrics: review of recent and limited new data of thermogalvanic cell expe­riments. Nanoscale and microscale thermophysical engineering. 2013. 17(4): 304–323.

Godovikov A.A. Mineralogiya. M.: Nedra, 1983. 348–393 pp.

Kokotov YU.A. Ionityiionnyjobmen. L.: Himiya, 1980. 150 p.

Bulah A.G. Mineralogiya s osnova mikristallografii. M.: Nedra, 1989. 239–252 pp.

Davidovits J. Geopolymers: Inorganic Polymeric New Materials. J. Thermal Anal. 1991. 37: 1633–1656.

Van Wazer JR. Equilibria and kinetics in inorganic polymerizations. InorgMacromol Rev. 1970. 1: 89.

Rahier H., Van Mele B., Biesemans M., Was­tiels J., & Wu X. Low-temperature synthesized aluminosilicate glasses. Journal of materials science. 1996. 31(1): 71–79.

Palomo A., &dela Fuente J.L. Alkali-activated cementitous materials: Alternative matrices for the immobilisation of hazardous wastes: Part I. Stabilisation of boron. Cement and Concrete Research. 2003. 33(2): 281–288.

Krivenko P.V. Alkaline cements. InProceedings of the 1st International Conference on Alkaline Cements and Concretes, Kiev, Ukraine. 1994. 1: 11–129.

Mallicoat S., Sarin P., Kriven W.M. Novel, Alkali-Bonded, Ceramic Filtration Membranes. Ceramic Engineering and Science Proceedings. 2005. 26: 37–44.

Sofi M., Van Deventer J.S.J., Mendis P.A., &Lukey G.C. Bond performance of reinforcing bars in inorganic polymer concrete (IPC). Journal of Materials Science. (2007). 42(9): 3107–3116.

Bao Y., Grutzeck M.W., &Jantzen C.M. Preparation and properties of hydroceramic waste forms made with simulated Hanford low‐activity waste. Journal of the American Ceramic Society. 2005. 88(12): 3287–3302.

Duxson P., Fernández-Jiménez A., Provis J.L., Lukey G.C., Palomo A., & van Deventer J.S. Geopolymer technology: the current state of the art. Journal of materials science. 2007. 42(9): 2917–2933.

Vyatkina O.V., Pershina E.D., &Kazdobin K.A. Priroda kislotno-osnovnoji kataliti­che­skoj aktivnosti montmorillonita v vodnoj srede. Ukrainskij himicheskij zhurnal. 2006. 72(7): 19–24.

Douiri H., Louati S., Baklouti S., Arous M., &Fakhfakh Z. Structural, thermal and dielectric properties of phosphoric acid-based geopolymers with different amounts of H3PO4. Materials Letters. 2014. 116: 9–12. https://doi.org/10.1016/j. matlet.2013.10.075.

Louati S., Baklouti S., &Samet B. Geopolymers based on phosphoric acid and illito-kaolinitic clay. Advances in Materials Science and Engineering. 2016. 2016: 1–7. https://doi.org/10.1155/ 2016/2359759.

Le-Ping L., Xue-Min C., Shu-Heng Q., Jun-Li Y., & Lin Z. Preparation of phosphoric acid-based porous geopolymers. Applied Clay Science.2010. 50(4): 600–603.

https:// doi.org/10.1016/j.clay.2010.10.004.

Akimov S.V., Dudnik E.F., Duda V.M., Tomchakov A.N. Partial ferroelastics. Ferroelectrics. 2004. 307(1): 13–18.

https://doi.org/10.1080/00150190490498433.

Cui X.M., Liu L.P., He Y., Chen J.Y., & Zhou J. A novel aluminosilicategeopolymer material with low dielectric loss. Materials Chemistry and Physics. 2011. 130(1–2): 1–4.

https://doi.org/10.1016/j.matchemphys.2011.06.

Douiri H., Louati S., Baklouti S., Arous M., &Fakhfakh Z. Enhanced dielectric performance of metakaolin–H3PO4 geopolymers. Materials Letters. 2016. 164: 299–302.

https://doi.org/10.1016/j.matlet.2015.10.172.

Pershina E., Karpushin N., &Kazdobin K. Aluminosilicate conductivity at the presence of water. Surface Engineering and Applied Electrochemistry. 2010. 46(4): 339–347.

Kokhanenko E. V., Kokhanenko V. V., Pershina K. D., Karpushin N. A., &Kazdobin K. A. The Red.-Ox. and Conducting Properties of the Natural Aluminosilicate Treated by Phosphate-Ions. UchenyeZapiskiTavricheskogo Nat. Univ. Ser. Biologiyaikhimiya. 2010. 23(621): 177–187.

Douiri H., Kaddoussi I., Baklouti S., Arous M., &Fakhfakh Z. Water molecular dyna­mics of metakaolin and phosphoric acid-based geopolymers investigated by impedance spectroscopy and DSC/TGA. Journal of Non-Crystalline Solids. 2016. 445: 95–101.

https://doi.org/10.1016/j.jnoncrysol.2016.05.013.

Liu L.P., Cui X.M., He Y., & Yu J.L. Study on the dielectric properties of phosphoric acid-based geopolymers. In Materials Science Forum. 2011. 663: 538–541.

https://doi.org/10.4028/www.scientific.net/MSF.

-665.538.

Liu L.P., Cui X.M., He Y., Liu S.D., & Gong S.Y. The phase evolution of phosphoric acid-based geopolymers at elevated temperatures. Materials Letters. 2012. 66(1): 10–12.

https://doi.org/10.1016/j.matlet.2011.08.043.

Lee W.K.W., & Van Deventer J.S.J. The effect of ionic contaminants on the early-age properties of alkali-activated fly ash-based cements. Cement and Concrete Research. 2002. 32(4): 577–584.

Alonso S., &Palomo A. Alkaline activation of metakaolin and calcium hydroxide mixtures: influence of temperature, activator concentration and solids ratio. Materials Letters.. 2001. 47(1–2): 55–62.

Yip C.K., Lukey G.C., & Van Deventer J.S. Effect of blast furnace slag addition on microstructure and properties of metakaolinitegeopolymeric materials. Ceramic Transactions. 2004. 153: 187–209.

Yip C.K., & Van Deventer J.S.J. Microanalysis of calcium silicate hydrate gel formed within a geopolymeric binder. Journal of Materials Science. 2003. 38(18): 3851–3860.

Granizo M.L., Alonso S., Blanco‐Varela M.T., &Palomo A. Alkaline activation of metakaolin: effect of calcium hydroxide in the products of reaction. Journal of the American Ceramic Society. 2002. 85(1): 225–231.

Shubbar A.A., Sadique M., Kot P., & Atherton W. Future of clay-based construction materials–A review. Construction and Building Materials. 2019. 210: 172–187.

Zhang X., Bai C., Qiao Y., Wang X., Jia D., Li H., & Colombo P. Porous geopolymer composites: A review. Composites Part A: Applied Science and Manufacturing. 2021. 150: 106629.

Swaddle T.W., Salerno J., &Tregloan P.A. Aqueous aluminates, silicates, and alumino­sili­cates. Chemical Society Reviews. 1994. 23(5): 319–325.

Fernández-Jiménez A., Palomo A., Sobrados I., &Sanz J. The role played by the reactive alumina content in the alkaline activation of fly ashes. Microporous and Mesoporous materials. 2006. 91(1–3): 111–119.

Duxson P., Lukey G.C., Separovic F., & Van Deventer J.S.J. Effect of alkali cations on aluminum incorporation in geopolymeric gels. Industrial & Engineering Chemistry Research. 2005. 44(4): 832–839.

Palomo A., Alonso S., Fernandez‐Jiménez A., Sobrados I., &Sanz J. Alkaline activation of fly ashes: NMR study of the reaction products. Journal of the American Ceramic Society. 2004. 87(6): 1141–1145.

Barbosa V. F., MacKenzie K. J., &Thaumaturgo C. Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers. International journal of inorganic materials. 2000. 2(4): 309–317.

Alonso S., &Palomo A. Calorimetric study of alkaline activation of calcium hydroxide–metakaolin solid mixtures. Cement and Concrete Research. 2001. 31(1): 25–30.

Brinker C.J., & Scherer G.W. Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing Academic Press: London. United Kingdom. London. 1990. 980 p.

Yang S., Navrotsky A., & Phillips B.L. In situ calorimetric, structural, and compositional study of zeolite synthesis in the system 5.15 Na2O− 1.00 Al2O3− 3.28 SiO2− 165H2O. The Journal of Physical Chemistry B. 2000. 104(25): 6071–6080.

Rowles M., &O'connor B. Chemical optimisation of the compressive strength of aluminosilicategeopolymers synthesised by sodium silicate activation of metakaolinite. Journal of Materials Chemistry. 2003. 13(5): 1161–1165.

Palomo A., &Glasser F.P. Chemically-bonded cementitious materials based on metakaolin. British ceramic. Transactions and journal. 1992. 91(4): 107–112.

Van Jaarsveld J.G.S., & Van Deventer J.S.J. The effect of metal contaminants on the formation and properties of waste-based geopolymers. Cement and Concrete Research. 1999. 29(8): 1189–1200.

Barrer R.M., & Mainwaring D.E. Chemistry of soil minerals. Part XI. Hydrothermal transformations of metakaolinite in potassium hyd­roxide. Journal of the Chemical Society, Dalton Transactions. 1972. 12: 1254–1259.

Barrer R.M., & Mainwaring D.E. Chemistry of soil minerals. Part XIII. Reactions of metakao­linite with single and mixed bases. Journal of the Chemical Society, Dalton Transactions. 1972. 22: 2534–2546.

Barrer R.M. Hydrothermal chemistry of zeolites. Academic, London. 1982. 360p.

Baerlocher C., Meier W.M., Olson D.H. Atlas of zeolite framework types, 5th revised edition. Elsevier, Amsterdam. 2001. 308 p.

Swaddle T.W. Silicate complexes of aluminum (III) in aqueous systems. Coordination Chemistry Reviews. 2001. 219: 665–686.

Provis J.L., Duxson P., Lukey G.C., Separovic F., Kriven W.M., & Van Deventer J.S. Modeling speciation in highly concentrated alkaline silic­ate solutions. Industrial & engineering chemistry research. 2005. 44(23): 8899–8908.

Provis J.L., Lukey G.C., & van Deventer J.S. Do geopolymers actually contain nanocrystalline zeolites? A reexamination of existing results. Chemistry of materials. 2005. 17(12): 3075–3085.

Wen S., & Chung D.D.L. Origin of the thermoelectric behavior of steel fiber cement paste. Cement and concrete research. 2002. 32(5): 821–823.

https://doi.org/10.1016/S0008-8846(01)00754-2.

Wen S., & Chung D.D.L. Effect of fiber content on the thermoelectric behavior of cement. Journal of materials science. 2004. 39(13): 4103–4106.

https://doi.org/10.1023/B: JMSC.0000033389. 83459.8f.

Sun M., Li Z., & Song X. Piezoelectric effect of hardened cement paste. Cement and Concrete Composites. 2004. 26(6): 717–720.

https://doi.org/10.1016/S0958-9465(03)00104-5.

Cao J., & Chung D.D.L. Role of moisture in the Seebeck effect in cement-based materials. Cement and concrete research. 2005. 35(4): 810–812.

https://doi.org/10.1016/j.cemconres.2004.05.036.

Cai J., Tan J., & Li X. Thermoelectric behaviors of fly ash and metakaolin based geopolymer. Construction and Building Materials. 2020. 237: 117757.

https://doi.org/10.1016/j.conbuildmat.2019.117757.

Li J., Tay B.W. Y., Lei J., & Yang E.H. Experimental investigation of Seebeck effect in metakaolin-based geopolymer. Construction and Building Materials. 2021. 272: 121615.

https://doi.org/10.1016/j.conbuildmat.2020.

Anshul A., Moinuddin A.A., Azad A.M., Khera P., Dehariya K., Bherwani H., ... & Kumar S. Morphologically designed micro porous zeolite-geopolymers as cool coating materials. Journal of Hazardous Materials. 2020. 398: 123022.

https://doi.org/10.1016/j.jhazmat.2020.123022.

Ji T., Zhang X., & Li W. Enhanced thermoelectric effect of cement composite by addition of metallic oxide nanopowders for energy harvesting in buildings. Construction and Building Materials. 2016. 115: 576–581.

https://doi.org/10.1016/j.conbuildmat.2016.04.

Lan Y., Minnich A.J., Chen G., & Ren Z. Enhancement of thermoelectric figure‐of‐merit by a bulk nanostructuring approach. Advanced Functional Materials. 2010. 20(3): 357–376. https://doi.org/10.1002/adfm.v20:310.1002/adfm.200901512.

Cai J., & Li X. Thermoelectric properties of geopolymers with the addition of nano-silicon carbide (SiC) powder. Ceramics International. 2021. 47(14): 19752–19759.

https://doi.org/10.1016/j.ceramint.2021.03.313.

Díaz E.E.S., & Barrios V.A.E. Development and use of geopolymers for energy conversion: An overview. Construction and Building Materials. 2022. 315: 125774.

Aw Y.Y., Yeoh C.K., Idris M.A., Teh P.L., Hamzah K.A., &Sazali S.A. Effect of printing parameters on tensile, dynamic mechanical, and thermoelectric properties of FDM 3D printed CABS/ZnO composites. Materials. 2018. 11(4): 466.

Kim H., Anasori B., Gogotsi Y., &Alshareef H.N. Thermoelectric properties of two-dimensional molybdenum-based MXenes. Chemistry of Materials. 2017. 29(15): 6472–6479.

Kim M.H., Cho C.H., Kim J.S., Nam T.U., Kim W.S., Lee T. I., & Oh J.Y.. Thermoelectric energy harvesting electronic skin (e-skin) Patch with reconfigurable carbon nanotube clays. Nano Energy. 2021. 87: 106156.

Xia M., &Sanjayan J. Method of formulating geopolymer for 3D printing for construction applications. Materials & Design. 2016. 110: 382–390.

Xu J., & Zhang D. Multifunctional structural supercapacitor based on graphene and geopo­ly­mer. ElectrochimicaActa. 2017. 224: 105–112.

https://doi.org/10.1016/j.electacta.2016.12.045.

Liu F., Zhao B., Wu W., Yang H., Ning Y., Lai Y., & Bradley R. Low cost, robust, environmentally friendly geopolymer–mesoporous carbon composites for efficient solar powered steam generation. Advanced Functional Materials. 2018. 28(47): 1803266. https://doi.org/10.1002/adfm.v28.4710.1002/adfm.201803266.

Downloads

Download data is not yet available.