CCDC, EDTA, Hydrogen bonding, X-ray crystallography

How to Cite



In the present study, the crystal structures of non-chelating EDTA molecules and their non-chelation salts in a zwitterionic state, along with the EDTA-chelates of alkali and alkaline earth metals, were searched and overviewed. 25 non-chelating molecules of EDTA, and zwitterions of ethylenediammonium-diacetate diacetic acid HOOC-CH2-(-OOC-CH2-)NH+-CH2-CH2-NH+(-CH2-COO-)-CH2-COOH and their salts (ethylenediammonium-tetraace­tic acid (HOOC-CH2-)2NH+-CH2-CH2-NH+(-CH2-COOH)2, ethylenediammonium-acetate triacetic acid (HOOC-CH2-)2NH+-CH2-CH2-NH+(-CH2-COO-)-CH2-COOH, and ethylenediammonium-tetraacetate (-OOC-CH2-)2NH+-CH2-CH2-NH+(-CH2-COO-)2 with counterions, as well as 17 types of EDTA-chelates of alkali metal ions (Li+, Na+, K+, Rb+) and alkaline earth metal ions (Mg2+, Ca2+, Sr2+, Ba2+) were analyzed using data from the Cambridge Crystallographic Data Center (CCDC). Each intramolecular contact distance between nitrogen and oxygen atoms (NH+···O) has been examined and found to be around 2.7 Å. Investigation on the distribution of the intramolecular NH+··· NH+-distances of EDTA and non-chelated salts thereof also revealed that bulky counterion and certain crystal solvent molecules correspond to change in crystal packing, and that they influenced the conformers of EDTA mo­lecules among gauche form to anti form. In the existing crystalline EDTA-chelates of alkali metals as well as alkaline earth metals, various coordination numbers (CN) and the denticity (к) of EDTA anions are displayed; CN 5 to 9, and tri- and hexadentate fashions. Intramolecular contact N···O and N···N distances correspond to the metal ion radii except for the case of Sr-EDTA chelate, probably due to differences of crystal packings in addition to the number of counterions and crystal solvent molecules. The existing data on crystalline EDTA and its salts have been gathered herein, which contributes to a further understanding and exploring applications hereafter.


Blaurock-Busch E.K. EDTA: Ethylene diamine tetra acetic acid – A review. Occup Med Health Aff. 2016.4(5):245 (5 pp.).

doi: 10.4172/2329-6879.1000245.

Lee B. Classification of conformational types of metal ethylenediaminetetraacetato complexes. Inorg Chem. 1972.11(5): 1072–1079. doi: 10.1021/ic50111a032.

Porai-Koshits M.A., Pozhidaev A.I., Polynova T.N. Conformational possibilities of the ethylenediaminetetraacetate ion. J Struct Chem.1974.15(6): 991–998.

doi: 10.1007/BF00747614.

Nuttall R.H., Stalker D.M. Structure and bonding in the metal complexes of ethylenediaminetetraacetic acid. Talanta. 1977.24(6): 355–360.

doi: 10.1016/0039-9140(77)80020-9.

Stezowski J.J., Hoard J.L. Heavy metal ionophores: Correlations among structural parameters of complexed nonpeptidepolyamino acids. Isr J Chem. 1984.24(4): 323–334.

doi: 10.1002/ijch.198400055.

Davidovich R.L. Stereochemistry of Pb(II) complexes with aminopolycarboxylic ligands. The role of a lone electron pair. Russ J Coord Chem. 2005.31(7): 455–466.

doi: 10.1007/s11173-005-0120-4.

Stavila V., Davidovich R.L., Gulea A., Whitmire K.H. Bismuth(III) complexes with aminopolycarboxylate and polyaminopolycarboxylate ligands: Chemistry and structure. CoordChem Rev. 2006.250: 2782–2810.

doi: 10.1016/j.ccr.2006.02.032.

Wang J., Hu P., Liu B., Jin X., Kong Y., Gao J., Wang D., Wang B., Xu R., Zhang X. Investigation on coordination number and geometrical conformation of rare earth complexes with catenulate aminopolycarboxylic acid ligands. J Coord Chem.2010.63(13): 2193–2222.

doi: 10.1080/00958972.2010.500378.

Noguchi D. EDTA complexes of aluminum and other earth metals with some unique crystal structures: A brief overview. Rep Grad SchEng Nagasaki Univ. 2022a.52(99): 30–37 (іn Japanese). Available at (accessed, November, 2022).

Groom C.R., Bruno I.J., Lightfoot M.P., Ward S.C. The Cambridge structural database. ActaCryst Sect B 2016.72(2): 171–179.

doi: 10.1107/S2052520616003954.

Kaluderović G.N., Gómez-Ruiz S., Schmidt H., Steinborn D. A monoclinic form of N,N,N',N'-tetrakis(carboxymethyl)ethylenediammonium dichloride trihydrate. ActaCrystallogr Sect E. 2007.63(8): o3491.

doi: 10.1107/S1600536807033569.

Mistryukov V.E., MikhailovYu.N., Sergeev A.V., Zhuravlov M.G., Schelokov R.N., Chernov A.P., Fodorov V.A., Brekhovskikh M.N. 2-charge cation of ethylenediammoniumtetraacetic acid in the crystalstructure of H6EDTACl2.3H2O. DoklAkadNauk SSSR 1987.295: 1390–1393 (іn Russian).

Shkol'nikova L.M., Sotman S.S., Poznyak A.L. Crystal and molecular structure of diprotonated ethylenediamine-N,N,N’,N’-tetraace­tic acid sulfate monohydrate. Crystallogr.Rep. 1993.38(1): 40–43.

Shkol'nikova L.M., Suyarov K.D., Gasparyan A.V., Poznyak A.L., Zavodnik V.E., Dyatlova N.M. An X-ray diffraction structural investigation of organic complexone ligands. XVI. Crystal and molecular structure of the dihydro-chloride salts of ethylenediamine-N,N′-di-3-propionic and ethylenediamine-N,N,N′,N′-tetra-3-propionic acids and the monohydrobromide salt of ethylenediamine-N,N,N′,N′-tetraacetic acid monohyd­rate.JStruct Chem. 1989.30(6): 944–956.

doi: 10.1007/BF00752795.

Ladd M.F.C., Povey D.C., Stace B.C. Crystallographic and spectroscopic studies on ethylenediaminetetraacetic acid (edta) III. Crystal and molecular structure of α-edta and infrared studies on α- and β-edta. J CrystMolStruct. 1974.4(5): 313–325.

doi: 10.1007/BF01636045.

Lu Y., Shao M. Determination of the crystal structure of ethylenediamine tetra-acetic acid. Sci. Sinica. 1962.11(4): 469–476 (іn Russian).

Cotrait M. La structure cristalline de l'acideéthylènediaminetétratétra-acétique, EDTA. ActaCrystallogr Sect B. 1972.28(3): 781–785. (In French).

doi: 10.1107/S056774087200319X.

Ladd M.F.C., Povey D.C. Crystallographic and spectroscopic studies on ethylenediaminetetraacetic acid (edta) I. Crystal and molecular structure of β-edta. J CrystMolStruct. 1973.3(1): 15–23.

doi: 10.1007/BF01270899.

Wang J., Zhang X., Zhang Y., Liu Z. Investigation on the coordinate structures of the rare earth metal complexes with edta and cydta ligands. Wuhan Univ J Nat Sci. 2003.8(4): 1131–1137. doi: 10.1007/BF02903686.

Xiao H., Teng C., Cai Q., Sun S., Cai T., Deng Q. A novel Ni/Na – Containing inorganic-organic hybrid supramolecule based on polyoxometalate and EDTA with ultraviolet-visible light photochromism. Solid State Sci. 2016.58: 122–128.

doi: 10.1016/j.solidstatesciences.2016.06.005.

Ma H., Niu D. Synthesis and crystal structure of hexaaquomanganesedihydrogenethylenediaminetetraacetate. J Xuzhou Normal Univ Nat Sci Ed. 2003.21(2): 29–32 (in Chinese).

Ragul R., Vikram L., Sivasankar B.N. Preparation, characterization, thermal degradation, and crystal structures of hydrazinium and ammonium salts of ethylenediaminetetraacetic acid and seven coordinated N2H5[Cd(Hedta)(H2O)].H2O. Synth React Inorg Met-Org Nano-Met Chem. 2015.45(7): 1069–1079.

doi: 10.1080/15533174.2013.862654.

Polyakova I.N., Poznyak A.L., Sergienko V.S. Crystal and molecular structure of Sr2(Edta)•5H2O, Sr2(H2Edta)(HCO3)2•4H2O, and Sr2(H2Edta)Cl2•5H2O strontium ethylenediaminetetraacetates. Crystallogr Rep.2009.54(2): 236–241.

doi: 10.1134/S1063774509020114

Vella-Zarb L., Braga D., Orpen A.G., Baisch U. The influence of hydrogen bonding on the planar arrangement of melamine in crystal structures of its solvates, cocrystals and salts. CrystEngComm. 2014.16(35): 8147–8159.

doi: 10.1039/C4CE00748D.

Krawczyk M.K., Lis T. New coordination modes in po-tassiumedta salts: K2[H2edta]•2H2O, K3[Hedta]•2H2O and K4[edta]•3.92H2O. ActaCrystallogr. Sect C. 2011.67(7): m266–m274. doi:10.1107/S010827011102244X.

Fronczek F.R. CCDC 1020814: Experimental crystal structure determination.CSDCommun. 2014. doi:10.5517/cc1387h3.

Sivasankar B.N., Sonia C. Structural and insilico studies on hydrazinium and ammonium salts of ethylenedia-minetetraacetic acid and 1,2-transcyclohexanediaminetetraacetic acid. World J Pharm Res. 2016.5(1): 796–809. doi:10.5517/ccdc.csd.cc13pxsh.

Julian M.O., Day V.W., Hoard J.L. Structure of hexaaquomagnesiumdihydrogenethylenediaminetetraacetate, Mg(OH2)6H2EDTA. Stereochemistry of the uncomplexed H2EDTA2- ion. Inorg Chem. 1973.12(8): 1754–1757.

doi: 10.1021/ic50126a010.

Cotrait M. Structure cristalline d'un selbirubidique de l'EDTA. ActaCrystallogr Sect B. 1970.26(8): 1152–1161 (in French).

doi: 10.1107/S0567740870003758.

Cotrait M. Structure d’un sel de potassium de l’acideéthylènediaminetétraacétique. C R AcadSci Paris Série C. 1969.268: 1848–1851. (In French). Available at (acces­sed, November, 2022).

Zabel M.A., Poznyak A.L., Pawlowski V.I. Crystal structure of calcium dihydroethylenediaminetetraacetate(2-) dihydrate Ca(H2Edta)•2H2O. J Struct Chem. 2006.47(3): 581–584. doi: 10.1007/s10947-006-0341-5.

Font-Bardia M., Solans X., Font-Altaba M. Sodium ion complexes with ethylenediamine­tetraaeetic acid. ActaCrystallogr Sect C. 1993.49(8): 1452–1456.

doi: 10.1107/S0108270193001350.

Císařová I., Podlahová J., Podlaha J. Crystal structure of the adduct hexahydroxotelluric acid-disodium ethylenediaminetet-raacetate-­water (1/1/2). Collect Czech ChemCommun. 1995.60(5): 820–828.

doi: 10.1135/cccc19950820.

Meier R., Massa W. CCDC 1968403: Experimental crystal structure determination. CSD Commun. 2019.

doi: 10.5517/ccdc.csd.cc2428wd.

Zheng H., Wang Y., Cao P., Wu P. Color-tunableultralong room temperature phosphorescence from EDTA. ChemCommun. 2021.57(29): 3575–3578. doi: 10.1039/D1CC00207D.

Gong Y., Tan Y., Mei J., Zhang Y., Yuan W., Zhang Y., Sun J., Tang B. Room temperature phosphorescence from natural products: Crystallization matters. Sci China Chem. 2013.56(9): 1178–1182.

doi: 10.1007/s11426-013-4923-8.

Chen X., Luo W., Ma H., Peng Q., Yuan W.Z., Zhang Y. Prevalent intrinsic emission from nonaromatic amino acids and poly(amino acids). Sci China Chem. 2018.61(3): 351–359.

doi: 10.1007/s11426-017-9114-4.

Cheng P., Lin W., Tseng F., Kao C., Chang T., Raja D.S., Liu W., Lin C. Syntheses, structures, and properties of multidi-mensional lithium coordination polymers based on aliphatic carboxylic acids. Dalton Trans. 2013.42(8): 2765–2772. doi: 10.1039/c2dt32424e.

Antsyshkina A.S., Sadikov G.G., Poznyak A.L., Sergienko V.S. Crystal structure of the tris(1,10-Phenanthroline)nickel diaqua(ethylenediaminetetraacetato)calciate crystal hydrate [Ni(Phen)3][Ca(Edta)(H2O)2]•10.5H2O. Russ J. Inorg Chem. 2002.47(1): 39–48.

doi: 10.5517/cc6ln7n.

Chen S., Hoffmann S., Prots Y., Zhao J-T., Kniep R. Preparation, crystal structures and thermal decomposition of Ba2(EDTA) and Ba2(EDTA)•2.5H2O. Z AnorgAllg Chem. 2010.636(9-10): 1710–1715.

doi: 10.1002/zaac.201000044.

Sadikov G.G., Antsyshkina A.S., Sergienko V.S., Poznyak A.L. Crystal structure of the tris(1,10-phenanthroline)nickel diaqua(ethylenediaminetetraacetato)bariate crystal hydrate [Ni(Phen)3][Ba(Edta)(H2O)2]•12H2O. Russ J Inorg Chem. 2002.47(1): 49–59.

doi: 10.5517/cc6ln6m.

Shao M., Tang Z., Liu T., Song S., Tang Y. The crystal structure of di-barium salt of ethylene-diamine-tetra-acetic acid. Sci Sin. 1979.22(8): 912–924.

Barnett B.L., Uchtman V.A. Structural investigations of calcium-binding molecules. 4. Calcium binding to aminocarboxylates. Crystal structures of Ca(CaEDTA)•7H2O and Na(CaNTA). Inorg Chem. 1979.18(10): 2674–2678. doi: 10.1021/ic50200a007.

Schlemper E.O. Synthesis and X-ray diffraction study of hexaamminecobalt(III) sodium ethylenediaminetetraacetate 3.5-hydrate. J CrystMolStruct. 1977.7(2): 81–93.

doi: 10.1007/BF01369834.

Passer E., White J.G., Cheng K.L. The crystal structure of Mg2EDTA•9H2O. InorgChimActa 1977.24: 13–23.

doi: 10.1016/S0020-1693(00)93844-1.

Pozhidaev A.I., Polynova T.N., Porai-Koshits M.A., Logvinenko V.A. Crystal structure of magnesium ethylenediaminetetraacetatenonahydrate. J Struct Chem. 1974a.14(4): 696–697. doi: 10.1007/BF00743308.

Pozhidaev A.I., Polynova T.N., Porai-Koshits M.A., Dudakov V.G. Crystal structure of di­sodium magnesium ethylenediaminetetraacetatetetrahydrate. J Struct Chem. 1974b.15(1): 149–150. doi: 10.1007/BF00753807.

Stezowski J.J., Countryman R., Hoard J.L. Structure of the ethylenediamine-tetraacetatoaquomagnesate(II) ion in a crystalline sodium salt. Comparative stereochemistry of the seven-coordinate chelates of magnesium(II), manganese-(II), and iron(III). Inorg Chem. 1973.12(8): 1749–1754.

doi: 10.1021/ic50126a009.

Arriortua M.I., Insausti M., Urtiaga M.K., Vía J., Rojo T. Synthesis and structure determi-nation of SrCa(edta).5H2O. ActaCryst Sect C 1992.48(5): 779–782.

doi: 10.1107/S0108270191011460.

Shannon R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. ActaCryst Sect A 1976.32(5): 751–767.

doi: 10.1107/S0567739476001551.

Noguchi D. Coordination number and denticity of EDTA complexes of alkaline earth metal ions like Mg2+ and Ca2+. JSSE Res Rep. 2022b.36(6): 59–64 (in Japanese).

doi: 10.14935/jsser.36.6_59.

Noguchi D. Diversity in coordination number and denticity of alkali metal-EDTA complexes. Rep Grad SchEng Nagasaki Univ. 2022c.52(99): 22–29 (in Japanese). Available at (accessed, November, 2022).

Noguchi D. Structures of heavier pnictogens (antimony and bismuth)-EDTA. Jxiv.2022d; Preprint (in Japanese). doi: 10.51094/jxiv.206.

Noguchi D. Intramolecular and intermolecular hydrogen bonds in non-chelation ethylenediaminetetraacetic acid (EDTA) and its salts. Jxiv. 2022e; Preprint (in Japanese).

doi: 10.51094/jxiv.213.


Download data is not yet available.