carbon, graphene, synthesis, environment, liquid nitrogen, water, adsorption.

How to Cite

Panteleimonov, R. (2022). WAYS OF CHANGING THE STRUCTURAL-MORPHOLOGICAL, PHYSICO-CHEMICAL AND ELECT­RICAL PROPERTIES OF GRAPHENES. Ukrainian Chemistry Journal, 88(7), 29-44. https://doi.org/10.33609/2708-129X.88.07.2022.29-44


A literature analysis of sources on synthesis methods and their influence on the structural-morphological, physico-chemical, and electrochemical properties of graphene and graphene-like structures was carried out. It was established that these properties have a clear dependence on the synthesis method, starting materials, and the composition of the synthesis medium.

The main ways of changing graphene's structural-morphological, physico-chemical and electrical properties are changes in the synthesis method and conditions that affect the formation of σ-bonds and π-bonds. The presence of these bonds regulates the number of graphene layers and the formation of van der Waals interactions between them, as well as the formation of edge structural defects responsible for electrokinetic and catalytic properties. Changing the gas medium to a liquid one greatly simplifies the synthesis of graphene. Still, in the case of a liquid nitrogen medium, simultaneously with a 2-dimensional structure, it is possible to form 3-dimensional particles up to tens of nanometers in size. Aqueous medium and plasma-arc synthesis methods are the most attractive for obtaining materials with electron-donor conductivity, which have attractive electrochemical and catalytic properties for use in chemical current sources and fuel cells. Using an aqueous environment requires mandatory further heat treatment at temperatures above 250 0C to se­parate chemisorbed water from the structure, which complicates the synthesis procedure. The advantage of the plasma-arc method for the synthesis of graphene and other carbon nanostructures is its ability to shorten the stages of the synthesis of graphene, the possibility of modifying them directly during the synthesis process by changing the environment, easy management, and obtaining a clean final pro­duct. In the modern practice, this method is limited to obtaining coatings on a solid carrier.



Lozovik Yu. E., Merkulova S. P., Sokolik A. A. Collective electronic phenomena in graphe­me. UFN 178. 2008. 757–776. doi: 10.3367/UFNr.0178.200807h.0757

Morozov S. V., Novoselov K. S., Geim A. K. Electron transport in grapheme. UFN. 2008. 178: 776–780. doi: 10.3367/UFNr.0178.200807h.0757

Castro Neto A. H., Guinea F., Peres N. M. R., Novoselov K. S. &Geim A. K. The electronic properties of graphene. Reviews of Modern Physics. 2009. 81(1): 109–162. doi: 10.1103/revmodphys.81.109

Rao C. N. R., Biswas K., Subrahmanyam K. S. &Govindaraj A. Graphene, the new nanocarbon. Journal of Materials Chemistry. 2009. 19(17): 2457. doi: 10.1039/b815239j

Geim A. K. Graphene: Status and Prospects. Science. 2009. 324(5934): 1530–1534. doi: 10.1126/science.1158877

Bolotin K. I., Sikes K. J., Jiang Z., Klima M., Fudenberg G., Hone J. ... &Stormer H. L. Ultrahigh electron mobility in suspended graphene. Solid state communications. 2008. 146(9–10): 351–355.

Avouris P. Graphene: Electronic and Photonic Properties and Devices. Nano Letters. 2010. 10(11): 4285–4294. doi: 10.1021/nl102824h

Liu W.-W., Chai S.-P., Mohamed A. R. &Hashim U. Synthesis and characterization of graphene and carbon nanotubes: A review on the past and recent developments. Journal of Industrial and Engineering Chemistry. 2014. 20(4): 1171–1185. doi: 10.1016/j.jiec.2013.08.028

Lee X. J., Hiew B. Y. Z., Lai K. C., Lee L. Y., Gan S., Thangalazhy-Gopakumar S. & Rigby S. Review on graphene and its derivatives: Synthesis methods and potential industrial implementation. Journal of the Taiwan Institute of Chemical Engineers. 2018.

doi: 10.1016/j.jtice.2018.10.028

Mohan V. B., Lau K., Hui D. & Bhattacharyya D. Graphene-based materials and their composites: A review on production, applications and product limitations. Composites Part B: Engineering. 2018. 142: 200–220. doi: 10.1016/j.compositesb.2018.013

Lee H. C., Liu W.-W., Chai S.-P., Mohamed A. R., Aziz A., Khe, C.-S. … Hashim U. Review of the synthesis, transfer, characterization and growth mechanisms of single and multilayer graphene. RSC Advances. 2017. 7(26): 15644–15693. doi: 10.1039/c7ra00392g

Son M. & Ham M.-H. Low-temperature synthesis of graphene by chemical vapor deposition and its applications. FlatChem. 2017. 5: 40–49. doi: 10.1016/j.flatc.2017.07.002

Yazdi G., Iakimov T. &Yakimova R. Epitaxial Graphene on SiC: A Review of Growth and Characterization. Crystals. 2016. 6(5): 53.doi: 10.3390/cryst6050053

Dato A. &Frenklach M. Substrate-free microwave synthesis of graphene: experimental conditions and hydrocarbon precursors. New Journal of Physics. 2010. 12(12): 125013.

doi: 10.1088/1367-2630/12/12/125013

Yang Y., Liu R., Wu J., Jiang X., Cao P., Hu X., … Su Y. Bottom-up Fabrication of Graphene on Silicon/Silica Substrate via a Facile Soft-hard Template Approach. Scientific Reports. 2015. 5(1): 1–7. doi: 10.1038/srep13480

Novoselov K. S. Electric Field Effect in Ato­mi­cally Thin Carbon Films. Science. 2004. 306(5696): 666–669. doi:10.1126/science.1102896

Chua C. K. &Pumera M. Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chem. Soc. Rev. 2014. 43(1): 291–312. doi: 10.1039/c3cs60303b

Emiru T. F. &Ayele D. W. Controlled synthesis, characterization and reduction of graphene oxide: A convenient method for large scale production. Egyptian Journal of Basic and Applied Sciences. 2017. 4(1): 74–79. doi: 10.1016/j.ejbas.2016.11.002

Haar S., Bruna M., Lian J. X., Tomarchio F., Oli­vier Y., Mazzaro R., … Samorì P. Liquid-­Phase Exfoliation of Graphite into Single- and Few-Layer Graphene with α-Functionalized Alkanes. The Journal of Physical Chemistry Letters. 2016. 7(14): 2714–2721. doi: 10.1021/acs.jpclett.6b01260

Wang C., Sun L., Dai X., Li D., Chen X., Xia W. & Xia W. Continuous synthesis of graphene nano-flakes by a magnetically rotating arc at atmospheric pressure. Carbon. 2019. 148: 394–402. doi: 10.1016/j.carbon.2019.04.015

Zhou Y., Wang N., Muhammad J., Wang D., Duan Y., Zhang X., … Zhang Z. Graphene nanoflakes with optimized nitrogen doping fabricated by arc discharge as highly efficient absorbers toward microwave absorption. Carbon. 2019. 148: 204–213. doi: 10.1016/j.carbon.2019.03.034

Kyesmen P. I., Onoja A. & Amah A. N. Ful­lerenes synthesis by combined resistive heating and arc discharge techniques. SpringerPlus. 2016. 5(1): 1–7.

doi: 10.1186/s40064-016-2994-7

Poudel Y. R. & Li W. Synthesis, properties and applications of carbon nanotubes filled with foreign materials: a review. Materials Today Physics. 2018. 7: 7–34. doi: 10.1016/j.mtphys.2018.10.002

Panteleimonov R., Boichuk O., Pershina K. &Ogenko V. Impact of the graphene synthesis and concentration conditions on electrical parameters of graphene – graphite system. Ukrainian Chemistry Journal. 2021. 87(8): 127–137. doi: 10.33609/2708-129X.87.08.2021.127-137

Talukder N., Wang Y., Nunna B. B. & Lee E. S. Nitrogen-doped graphene nanomaterials for electrochemical catalysis/reactions: A review on chemical structures and stability. Carbon. (2021). 185: 198–214. https://doi.org/10.1016/j.carbon.2021.09.025

Karimzadeh A., Hasanzadeh M., Shadjou N. & Guardia M. de la. Optical bio(sensing) using nitrogen doped graphene quantum dots: Recent advances and future challenges. TrAC Trends in Analytical Chemistry. 2018. doi: 10.1016/j.trac.2018.08.012

Kaur M., Kaur M. & Sharma V. K. Nitrogen-doped graphene and graphene quantum dots: A review onsynthesis and applications in energy, sensors and environment. Advances in Colloid and Interface Science. 2018. doi: 10.1016/j.cis.2018.07.001

Reddy B. J., Vickraman P. & Justin A. S. Electrochemical performance of nitrogen-doped graphene anchored nickel sulfidenanoflakes for supercapacitors. Applied Surface Science. 2019. doi: 10.1016/j.apsusc.2019.03.292

Jalili S. &Vaziri R. Study of the electronic properties of Li-intercalated nitrogen doped graphite. Molecular Physics. 2011. 109(5): 687–694. doi:10.1080/00268976.2010.547523

Zhuang S., Nunna B. B., Mandal D. & Lee E. S. A review of nitrogen-doped graphene catalysts for proton exchange membrane fuel cells-synthesis, characterization, and improvement. Nano-Structures & Nano-Objects. 2018. 15: 140–152. doi: 10.1016/j.nanoso.2017.09.003

Śliwak A., Grzyb B., Díez N. &Gryglewicz G. Nitrogen-doped reduced graphene oxide as electrode material for high rate supercapacitors. Applied Surface Science. 2017. 399: 265–271. doi: 10.1016/j.apsusc.2016.12.060

Xu Y., Tian B., Fang S., Guo W. & Zhang Z. Probing the interaction of water molecules with oxidized graphene by first principles. The Journal of Physical Chemistry. 2021. 125(8): 4580–4587.

Kim W., Javey A., Vermesh O., Wang Q., Li Y. & Dai H. Hysteresis Caused by Water Molecules in Carbon Nanotube Field-Effect Transistors. Nano Letters. 2003. 3(2): 193–198. doi: 10.1021/nl0259232

Verdaguer A., Sacha G. M., Bluhm H. &Salmeron M. Molecular Structure of Water at Interfaces: Wetting at the Nanometer Scale. Chemical Reviews. 2006. 106(4): 1478–1510. doi: 10.1021/cr040376l

Du X., Skachko I., Barker A. & Andrei E. Y. Approaching ballistic transport in suspended graphene. Nature Nanotechnology. 2008. 3(8): 491–495. doi: 10.1038/nnano.2008.199

Panchal V., Cedergren K., Yakimova R., Tza­lenchuk A., Kubatkin S. &Kazakova O. Small epitaxial graphene devices for magnetosensing applications. Journal of Applied Physics. 2012. 111(7): 07E509. doi: 10.1063/1.3677769

Jafri S. H. M., Carva K., Widenkvist E., Blom T., Sanyal B., Fransson J., … Leifer K. Conductivity engineering of graphene by defect formation. Journal of Physics D: Applied Physics. 2010. 43(4): 045404. doi: 10.1088/0022-3727/43/4/045404.

Jahanshahi M., MoradRashidi A. &AsgharGhoreyshi A. Synthesis and characterization of thermally-reduced graphene. Iranian (Ira­nica) Journal of Energy & Environment. 2013. 4(1).

Zhuang S., Nunna B. B., Boscoboinik J. A. & Lee E. S. Nitrogen-doped graphene catalysts: High energy wet ball milling synthesis and characterizations of functional groups and particle sizevariation with time and speed. International Journal of Energy Research. 2017. 41(15): 2535–2554. doi: 10.1002/er.3821

Chen D., Tao Q., Liao L. W., Liu S. X., Chen Y. X. & Ye S. Determiningthe Active Surface Area forVarious Platinum Electrodes. Electrocatalysis. 2011. 2(3): 207–219. doi: 10.1007/s12678-011-0054-1

Tang Longhua, Ying Wang, Yueming Li, Hongbing Feng, Jin Lu and Jinghong Li. Preparation, structure, and electrochemical properties of reduced graphene sheet films. Advanced Functional Materials. 2009. 19(17): 2782–2789.


Download data is not yet available.