PHYSICO-CHEMICAL PROPERTIES OF COMPOSITES ON THE BASE OF CERIA OBTAINED BY A CITRIC ACID METHOD
№4

Keywords

catalysts on the base of cerium oxide, method of temperature-programmed reduction (TPR), solid solutions, volatile organic compounds (VOC).

How to Cite

Romanova , I., & Kirillov, S. (2019). PHYSICO-CHEMICAL PROPERTIES OF COMPOSITES ON THE BASE OF CERIA OBTAINED BY A CITRIC ACID METHOD. Ukrainian Chemistry Journal, 85(4), 98-109. https://doi.org/10.33609/0041-6045.85.4.2019.98-109

Abstract

Composites with the formula nMOx–СеО2, where n is the mole part of copper or manganese oxide have been synthesized via citric acid aided route. Physico-chemical properties of materials obtained are investigated by XRD, low temperature desorption of nitrogen and by temperature-programmed reduction (TPR). It is defined that the composites with the n < 0.25 (for Cu) and < 0.75 (Mn) are the solid solutions obtained by the replacement of cerium ions in the structure of fluorite (СеО2) by copper or manganese ions. The existence of the separate phases of oxides such as CuO and Mn3O4 has been identified in the XRD patterns of composites with formula 0.25CuО–СеО2 and 0.75MnOx–СеО2. The parameters of cell and the particles size for all samples are calculated; decreasing these values occurs due to the solid solutions formation. Specific area of composites obtained is much bigger than specific area of individual oxides; the biggest values are determined for the samples containing the biggest part of copper or manganese oxide. According to TPR profiles of composites themaximal intensity of low temperature peak has the composite 0.25CuО–СеО2 that means the biggest part of the solid solution; so this material is the most active in CO and ethanol combustion. This fact can be explained by appearance of additional oxygen vacancies when ions Ce4+ are replacement by ions with the less oxidation state. The quantities of hydrogen used for reduction of samples with the copper oxide and samples with the manganese oxide with n < 0.5 are much bigger than the theoretical values; in this case the reduction of the part of ceria in the solid solution is happened. The composite 0.25MnOx–CeO2 is the most active in the ethanol combustion; full conversion to CO2 is finished at 205°С. The high activity of individual oxide MnOx and the composite 0.75MnOx–СеО2 in the reaction of toluene oxidation explains by the biggest part of Mn3+ ions in their structure among the all oxides investigated.

https://doi.org/10.33609/0041-6045.85.4.2019.98-109
№4

References

DaiH. Environmental catalysis: a solution for the removal of atmospheric pollutants. Sci. Bull. 2015. 60 (19): 1708.

Iodice P., Adamo P., Capozzi F., Di Palma A., Senatore A., Spagnuolo V., Giordano S. Air pollution monitoring using emission inventories combined with the moss bag approach. Sci. Total Environ. 2016. 541: 1410.

Cadotte M.W., Barlow J., Nuсez M.A., Pettorelli N., Stephens P.A. Solving environmental problems in the Anthropocene: the need to bring novel theoretical advances into the applied ecology fold. J. Appl. Catal. 2017. 54 (1): 1.

http://turbolider.com.ua/teh-centr/poleznaya_in formaciya/evro-standarty

Heck R.M., Farrauto R.J. Automobile exhaust catalysts. Appl. Catal. A: General. 2001. 221: 443.

Zhang M., Zhou B., Chuang K.T. Catalytic deep oxidation of volatile organic compounds over fluorinated carbon supported platinum catalysts at low temperatures. Appl. Catal. B: Environ. 1997.13: 123.

Carpentier J., Lamonier J.F., Siffert S., Aboukaэs A. Characterisation of Mg/Al hydrotalcite with interlayer palladium complex for catalytic oxidation of toluene. Appl. Catal. A: Gen. 2002. 234: 91.

Maldonado-Hodar F.J., Moreno-Castilla C., Perez- Gadenas F.F. Catalytic combustion of toluene on platinum-containing monolithic carbon aerogels. Appl. Catal. B: Environ. 2004. 54 (4): 217.

Gutierrez A., Kaila R.K., Honkela M.L., Slioor R., Krause A.O.I. Hydrode-oxygenation of guaiacol on noble metal catalysts. Catal.Today. 2009. 147 (3–4): 239.

Pakharea D., Spivey J. A review of dry (CO2) reforming of methane over noble metal catalysts. Chem. Soc. Rev. 2014. 43: 7813.

Hegde M.S., Bera P. Noble metal ion substituted CeO2 catalysts: Electronic interaction between noble metal ions and CeO2 lattice. Catal.Today. 2015. 253: 40.

Zhang Y., Zhou Y., Zhao Yu., Li Ch. Recent progresses in the size and structure control of MOF supported noble metal catalysts. Catal. Today. 2016. 263: 61.

Parida K.M., Amarendra S. Catalytic combustion of volatile organic compounds on Indian Ocean manganese nodules. Appl. Catal. A: Gen. 1999. 182: 249.

Ferrandon M., Bjornbom E. Hydrothermal stabilization by lanthanum of mixed metal oxides and noble metal catalysts for volatile organic compound removal. J. Catal. 2001. 200 (1): 148.

/ Li W.B., Wang J.X., Gong X. Catalytic combustion of VOCs on non-noble metal catalysts. Catal. Today. 2009. 148: 81.

Liu L., Concepciуn P., Corma А. Non-noble metal catalysts for hydrogenation: A facile method for preparing Co nanoparticles covered with thin layered carbon. J. Catal. 2016. 340: 1.

Romanova I.V., Farbun I.A., Khainakov S.A., Kirillov S.A., Zazhigalov V.A. Investigation of catalytic properties of materials based on transition metal oxides and cerium oxide. Dopovidi akademii nauk Ukrainy. 2008. 10: 154. [in Russian].

Farbun I.A.., Romanova I.V., Kirillov S.A. Properties of nanosized materials on the base of cerium and copper oxides obtained from the citric solutions. Chemistry, physics and technology of surface. 2008. 14: 311. [in Russian].

Romanova I.V., Farbun I.A., Khainakov S.A., Kirillov S.A. Properties of nanosized materials on the base of manganese and cerium oxides obtained

from the citric solutions. Surface. 2010. 2 (17): 197. [in Russian].

Romanova I.V. Catalytic activity of copper and cerium oxide in ethanol combustion. Chemistry, physics and technology of surface. 2010. 1 (4): 436. [in Russian].

Farbun I.A., Romanova I.V., Kirillov S.A. Optimal design of nanosized oxides using a citric acid aided route, with special reference to ZnO. J. Sol-Gel. Sci. Technol. 2013. 68 (3): 411.

Schwarzenbach G., Flaschka H. Die komplexometrische titration. (Moscow: Khimya, 1970). [in Russian].

Babko A.K., Pyatnizkii I.V. Quantative analysis. (Kiev: Vyshcha shkola, 1972). [in Russian].

Patterson A. The Scherrer formula for X-ray particle size determination. Phys. Rev. 1939. 56: 978.

Kulikov I.S. Thermodinamic of oxides. (Moscow: Metalurgia, 1986). [in Russian].

Kofstad P. Deviation from stoichiometry, diffusion and conductivity in a simples metal oxides (Moscow: Mir, 1975). [in Russian].

Mishenko K.P., Ravdel A.А. Shot catalog of physico-chemical values. (L.: Chemistry, 1982). [in Russian].

Li W.B., Wang J.X., Gong X. Catalytic combustion of VOCs on non-noble metal catalysts. Catal. Today. 2009. 148: 81.

Delimaris D., Ioannides Th. VOC oxidation over MnOx–CeO2 catalysts prepared by a combustion method. Appl.Catal. B: Environ. 2008. 84: 303.

Liao Y., Fua M., Chena L., Wu J., Huang B., Yea D. Catalytic oxidation of toluene over nanorodstructured Mn–Ce mixed oxides. Catal. Today. 2013. 216: 220.

Tang W., Wu X., Li Sh., Li W., Chen Y. Porous Mn–Co mixed oxide nanorod as a novel catalyst with enhanced catalytic activity for removal of VOCs. Catal. Commun. 2014. 56: 134.

Avgouropoulos G., Oikonomopoulos E., Kanistras D., Ioannides Th. Complete oxidation of ethanol over alkali-promoted Pt/Al2O3 catalysts. Appl. Catal. B: Environ. 2006. 65: 62.

Delimaris D., Ioannides Th. Intrinsic Activity of MnOx-CeO2 catalysts in ethanol oxidation. Catalysts.2017. 7 (339); doi: 10.3390/catal7110339.

Machida M., Uto M., Kurogi D., Kijima T. MnOx–CeO2 binary oxides for catalytic NOx sorption at low temperature. Sorptive removal of NOx. Chem.Mater. 2000. 12: 3158.

Ming-Shan S. Differential thermal analysis of shattuckite. Am. mineralogist. 1961. 46 (1–2): 67.

Pintar A., Batista J., Hocevar S. TPR, TPO, and TPD examinations of Cu0.15Ce0.85O2–y mixed oxides prepared by co-precipitation, by the sol– gel peroxide route, and by citric acid-assisted synthesis. J. Coll. Interface Sci. 2005. 285: 218.

Avgouropoulos G., Ioannides T. Selective CO oxidation over CuO–CeO2 catalysts prepared via the urea-nitrate combustion method. Appl. Catal. A: Gen. 2003. 244: 155.

Luo M.-F., Zhong Y.-J., Yuan X.-X., Zheng X.-M. TPR and TPD studies of CuO/CeO2 catalystsfor low temperature CO oxidation. Appl. Catal. A: Gen. 1997. 162: 121.

Rao G.R., Sahu H.R., Mishra B.G. Surface and catalytic properties of Cu–Ce–O composite oxides prepared by combustion method. Colloids and Surf. A: Physicochem. Eng. Aspects. 2003. 220: 261.

Xingyi W., Qian K., Dao L. Catalytic combustion of chlorobenzene over MnOx–CeO2 mixed oxide catalysts. Appl. Catal. B: Environ. 2009. 86: 166.

Macstre J.B., Lopez E.F., Gallardo-Amores J., Casero R.R., Bernal E. Influence of the synthesis parameters on the structural and textural properties

of precipitated manganese oxides. Intern. J. Inorg. Mater. 2001. 3: 889.

Li H., Qi G., Tana, Zhang X., Huang X., Li W., Chen W. Low-temperature oxidation of ethanol over a Mn 0.6Ce 0.4O2 mixed oxide. Appl. Catal. B: Environ. 2011. 103: 54.

Rao T., Shen M., Jia L., Hao J., Wang J. Oxidation of ethanol over Mn–Ce–O and Mn–Ce–Zr–O complex compounds synthesized by sol–gel method. Catal.Comm. 2007. 8: 1743.

Li H., Qi G., Tana, Zhang X., Li W., Shen W. Morphological impact of manganese–cerium oxideson ethanol oxidation. Catal. Sci. Technol.2011. 1: 1677.

Colman-Lerner E., Peluso M.A., Sambeth J., Thomas H. Cerium, manganese and cerium/manganese ceramic monolithic catalysts. Study of VOCs and PM removal. J. Rare Earth. 2016. 34: 675.

Chen X., Carabineiro S.A.C., Bastos S.S.T., Tavares P.B., Orfao J.J.M., Pereira F.F.M., FigueiredoI.L. Catalytic oxidation of ethylacetate on cerium-containing mixed oxides. Appl. Catal. A:General. 2014. 472: 101.

Kim S. Ch., Park Y.-K., Nah J.W. Property of a highly active bimetallic catalyst based on a supported manganese catalyst for the complete oxidation of toluene. Powder Techn. 2014. 266: 292.

Yinnian L., Xuan Zh., Ruosi P., Zh. Mengqi, Daiqi Ye. Catalytic properties of manganese oxide polyhedra with hollow and solid morphologies in toluene removal. Appl. Surf. Sci. 2017. 405: 20.

Huang H., Xu Y., Feng Q., Leung D.Y.C. Low temperature catalytic oxidation of volatile organic compounds: a review. Catalysis Science & Technology. 2015. 5: 2649.

Downloads

Download data is not yet available.