sol-gel synthesis, mesoporous TiO2 microspheres, anatase, lanthanum, H2 release.

How to Cite

Ermokhina, N., Korzhak, A., Klymchuk, D., Puziy, A., Grebennikov, V., Romanovska, N., Shulzhenko, O., & Manorik, P. (2022). PHOTOCATALYTIC ACTIVITY OF MESOPOROUS TiO2 (ANATAS) IN THE REACTION OF HYDROGEN RELEASE FROM AQUEOUS-ETHANOLIC MIXTURE. Ukrainian Chemistry Journal, 88(4), 94-112.


Samples of mesoporous nanocrystalline titanium dioxide (anatase with a crystallite size of about 10 nm) were obtained by a modified sol-gel method in the presence of a template of dibenzo-18-crown-6 and small additives of surfactant (dodecylmethylethylammonium bromide) or ions of lanthanum (III) in butyl alcohol in combination with hydrothermal treatment at 175 °C for 24 hours followed by calcination in air at 500 °C for 4 hours. The photocatalytic activity of the obtained TiO2 samples was investigated in a model reaction of the photocatalytic release of H2 from an aqueous-ethanol mixture. It was found that in all cases the use of hydrothermal treatment significantly increases the photoactivity of the obtained sample, which in some cases is more than 3-4 times higher than the corresponding characteristic for commercial photocatalyst Evonik P25. The key effect of hydrothermal treatment on the increase of photoactivity of the samples is probably the consequence of a drastic increase in the treated samples of pore volume and diameter, as well as a decrease in the size of anatase crystallites. These changes (along with a significant increase in the specific surface area) are greater for samples obtained in the presence of La3+ ions. It is shown that samples of TiO2 microspheres obtained at the same concentrations of reagents in the reaction mixture show slightly higher photocatalytic activity than the corresponding lanthanum-stabilized samples of mesoporous TiO2 powders (micrometer-scale particles are not formed in the presence of lanthanum (III) ions). However, with an increasing concentration of reagents in the reaction mixture, the photocatalytic activity has the sample containing lanthanum. Probably, this can be explained by the high textural characteristics of the TiO2 sample in combination with the peculiarities of its morphology - the formation of secondary nanoparticles of agglomerated formations and the influence of La3+ ions. It is worth noting that the photocatalytic activity of TiO2 samples prepared in the presence of La3+ ions reduces as their specific surface area decreases.


Nakata K., Fujishima A. TiO2 photocatalysis: design and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2012. 13(3): 169–189. 06.001

Pelaez M., Nolan N.T., Pillai S.C., Seery M.K., Falaras P., Kontos A.G., Dunlop P.S.M., Hamil­ton J.W.J., Byrne J.A., O’Shea K., Entezari M.H., Dionysiou D.D. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Applied Catalysis B: Environmental. 2012. 125: 331–349. 2012.05.036

Tong H., Ouyang S., Bi Y., Umezawa N., Oshikiri M., Ye J. Nanophotocatalytic materials: possibilities and challenges. Advance Materials. 2012. 24(2): 229–251.

Fresno F., Portela R., Suárez S., Coronado J.M. Photocatalytic materials: recent achievements and near future trends. Journal of Material Chemistry A. 2014. 2(9): 2863–2884.

Wang Y., Sun C., Zhao X., Cui B., Zeng Z., Wang A., Liu G., Cui H. The application of nano-TiO2 photo semiconductors in agriculture. Nanoscale Research Letters. 2016. 11(1): 529.

Kumar N., Chauhan N.S., Mittal A., Sharma S. TiO2 and its composites as promising biomaterials: a review. BioMetals. 2018. 31(2): 147–159.

Noman M.T., Ashraf M.A., Ali A. Synthesis and applications of nano-TiO2: a review. Environmental Science and Pollution Research. 2019. 26(4): 3262–3291.

Humayun M., Raziq F., Khan A., Luo W. Modi­fication strategies of TiO2 for potential applications in photocatalysis: a critical review. Green Chemistry Letters and Reviews. 2018. 11(2): 86–102. 1080/17518253.2018.1440324

Paul K.K., Giri P.K. Shape tailored TiO2 nanostructures and their hybrids for advanced ener­gy and environmental applications: a review. Journal of Nanoscience and Nanotechnology. 2018. 19(1): 307–331.

Dionysiou D.D., Puma G.Li., Ye J., Schneider J., Bahnemann D. Photocatalysis: applications. Royal Society of Chemistry, Cambridge. 2016.

Schneider J., Matsuoka M., Takeuchi M., Zhang J., Horiuchi Y., Anpo M., Bahnemann D.W. Understanding TiO2 photocatalysis: mechanisms and materials. Chemical Reviews. 2014. 114(19): 9919–9986.

Anpo M., Kamat P.V. Environmentally benign photocatalysts. Springer, New York. 2010.

Laura Cano-Casanova, Ana Amorós-Pérez, Maria Angeles Lillo-Ródenas and María del Carmen Román-Martínez. Effect of the preparation method (sol–gel or hydrothermal) and conditions on the TiO2 properties and activity for propane oxidation. Materials (Basel). 2018. 11(11): 2227.

Antonelli D.M., Ying J.Y. Synthesis of hexagonally packed mesoporous TiO2 by a modified sol–gel method. Angewandte Chemie International Edition in English. 1995. 34(18): 2014–2017. 199520141

Ismail A.A., Bahnemann D.W. Mesoporous titania photocatalysts: preparation, characterization and reaction mechanisms. Journal of Material Chemistry. 2011. 21(32):11686.

Kumar A. Different methods used for the synthesis of TiO2 based nanomaterials: a review. American Journal of Nano Research and Application. 2018. 6(1):1.

Shayegan Z., Lee C-S., Haghighat F. TiO2 photocatalyst for removal of volatile organic compounds in gas phase: a review. Chemical Engineering Journal. 2018. 334: 2408–2439. 09.153

Shen X., Tian B., Zhang J. Tailored preparation of titania with controllable phases of anatase and brookite by an alkalescent hydrothermal route. Catalysis Today. 2013. 201: 151–158. https://doi. org/10.1016/j.cattod.2012.04.038

Wu M., Lin G., Chen D., Wang G., He D., Feng S., Xu R. Solhydrothermal synthesis and hydrothermally structural evolution of nanocrystal titanium dioxide. Chemistry of Materials. 2002. 14(5): 1974–1980.

Yang X., Konishi H., Xu H., Wu M. Compa­rative Sol– hydro(solvo)thermal synthesis of TiO2 nanocrystals. European Journal of Inorganic Chemistry. 2006. (11): 2229–2235.

Wang C-C., Ying J.Y. Sol–gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals. Chemistry of Materials. 1999. 11(11): 3113–3120.

Castrejon-Sanchez V., Lopez R., Ramon-Gonzalez M., Enriquez-Perez A., Camacho-­Lo­pez M., Villa-Sanchez G. Annealing control on the anatase/rutile ratio of nanostructured titanium dioxide obtained by sol–gel. Crystals. 2018. 9(1): 22. 3390/cryst9010022

Bamne J., Sharma P.K., Haque F.Z. Effect of solvent mixing and calcination temperature on the growth of TiO2 nanoparticle prepared via sol–gel method. Materials Focus. 2018. 7(2): 232–241.

Luttrell T., Halpegamage S., Tao J., Kramer A., Sutter E., Batzill M. Why is anatase a better photocatalyst than rutile? Model studies on epitaxial TiO2 films. Scientific Reports. 2015. 4(1): 4043.

Sheikhnejad-Bishe O., Zhao F., Rajabtabar-­Darvishi A., Khodadad E., Mostofizadeh A., Huang Y. Influence of temperature and surfactant on the photocatalytic performance of TiO2 Nanoparticles. International Journal of Electrochemical Science. 2014. 9(8): 4230–4240.

Masolo E., Meloni M., Garroni S., Mulas G., Enzo S., Baro M., Rossinyol E., Rzeszutek A., Herrmann-Geppert I., Pilo M. Mesoporous titania powders: the role of precursors, ligand addition and calcination rate on their morphology, crystalline structure and photocatalytic activity. Nanomaterials. 2014. 4(3): 583–598.

Yue Y., Gao Z. Synthesis of mesoporous TiO2 with a crystalline framework. Chemical Communications. 2000. 18:1755–1756.

Byrappa K., Adschiri T. Hydrothermal technology for nanotechnology. Progress in Crystal Growth and Characterization of Materials. 2007. 53(2): 117–166.

Luis A.M., Neves M.C., Mendonca M.H., Monteiro O.C. Influence of calcination parameters on the TiO2 photocatalytic properties. Materials Chemistry and Physics. 2011. 125(1–2): 20–25.

Agarwala P., Makkar P., Sharma S., Garg R. The effect of heat treatment of TiO2 nanoparticles on photovoltaic performance of fabricated DSSCs. Journal of Materials Engineering and Performance. 2014. 23(10): 3703–3709.

Fattakhova-Rohlfing D., Zaleska A., Bein T. Three-Dimensional Titanium Dioxide. Nanomaterials, Chem. Rev. 2014. 114: 9487–9558.

Chen L-H., Li X-Y., Deng Z., Hu Z-Y., Rooke J.C., Krief A., Yang X-Y., Su B-L. Hydrothermal and surfactant treatment to enhance the photocatalytic activity of hierarchically meso – macroporous titanias. Catalysis Today. 2013. 212: 89–97. 2012.07.021

Hung I-M., Wang Y., Huang C-F., Fan Y-S., Han Y-J, Peng H-W. Effects of templating surfactant concentrations on the mesostructure of ordered mesoporous anatase TiO2 by an evaporation-induced self-assembly method. Journal of the European Ceramic Society. 2010. 30(10): 2065–2072. 04.015

Pal S., Laera A.M., Licciuli A., Catalano M., Taurino A. Biphase TiO2 Microspheres with Enhanced Photocatalytic Activity. Ind. Eng. Chem. Res. 2014. 53: 7931–7938.

Yang Y., Wang G., Deng Q., Ng D. H. L., Zhao H. Microwave-assisted fabrication of nanoparticulate TiO2 microspheres for synergistic photocatalytic removal of Cr(VI) and methyl orange. ACS Appl. Mater. Interfaces. 2014. 6: 3008–3015.

He Z., Que W., Surface scattering and reflecting: the effect on light absorption or photocatalytic activity of TiO2 scattering microspheres. Phys. Chem. Chem. Phys. 2013. 15: 16768–16773.

Tian S., Yang H., Cui M., Shi R., Zhao H., Wang X., Wang X., Zhang L. Monodisperse rutile TiO2 nanorod-based microspheres with various diameters: hydrothermal synthesis, formation mechanism and diameter- and crystallinity-dependent photocatalytic pro­per­ties. Appl. Phys. A. 2011. 104: 149–158.

Liu B., Nakata K., Sakai M., Saito H., Ochiai T., Murakami T., Takagi K., Fujishima A. Hierarchical TiO2 spherical nanostructures with tunable pore size, pore volume, and specific surface area: facile preparation and high-photocatalytic performance. Catal. Sci. Techhol. 2012. 2: 1933–1939.

Cao L., Chen D., Wu W.-Q., Tan J. Z. Y., Caruso R. A. Monodisperse anatase titania microspheres with high-thermal stability and large pore size (80 nm) as efficient photocatalysts. J. Mater. Chem. A. 2017. 5: 3645–3654.

Deng A., Zhu Y. Synthesis of TiO2/SiO2/Ag/Ag2O and TiO2/Ag/Ag2O nanocomposite spheres with photocatalytic performance. Research on Chemical Intermediates. 2018. 44: 4227–4243.

Stroyuk A.L., Ermokhina N.I., Korzhak A.V., Andryushina N.S., Kozytskiy A.V., Manorik P.A., Ilyin V.G., Puziy A.M., Sapsai V.I., Shcher­batyuk N.N. Photocatalytic and photoelectrochemical characteristics of mesoporous titanium dioxide microspheres. Theoret. and Experim. Chemistry. 2015. 51(3): 183–190.

Feng Y., Li L., Ge M., Guo C., Wang J., Liu L. Improved Catalytic Capability of Mesoporous TiO2 Microspheres and Photodecomposition of Toluene. ACS Appl. Mater. Interfaces. 2010. 2: 3134–3140.

Guo C., Ge M., Li L., Gao G., Feng Y., Wang Y. Directed Synthesis of Mesoporous TiO2 Microspheres: Catalysts and Their Photocatalysis for Bisphenol A Degradation. Environ. Sci. Technol. 2010. 44: 419–425.

Xie J., Bian L., Yao L., Hao Y., Wei Y. Simple fabrication of mesoporous TiO2 microspheres for photocatalytic degradation of pentachlorophenol. Mater. Lett. 2013. 91: 213–216.

Yanagishita T., Imaizumi M., Toshiaki K., Masuda H. TiO2 Hollow Spheres with Nano­porous Structures Fabricated by Anodization of Ti Particles. RSC Adv. 2015. 5: 41830–41834.

Guo C., Xu J., Zhang Y., He Y. Hierarchical mesoporous TiO2 microspheres for the enhanced photocatalytic oxidation of sulfonamides and their mechanism. RSC Adv. 2012. 2: 4720–4727.

Naldoni A., Bianchi C.L., Pirola C., Suslick K.S. Porous TiO2 microspheres with tunable properties for photocatalytic air purification. Ultrason. Sonochem. 2013. 20: 445–451.

Fang B., Bonakdarpour A., Reilly K., Xing Y., Taghipour F., Wilkinson D. P. Large-Scale Synthesis of TiO2 Microspheres with Hierarchical Nanostructure for Highly Efficient Photo Driven Reduction of CO2 to CH4. ACS Appl. Mater. Interfaces. 2014. 6: 15488–15498.

Yuan, S., Sheng, Q., Zhang, J., Yamashita, H., and He D. Synthesis of thermally stable meso­porous TiO2 and investigation of its photoca­talytic activity. Microporous and Mesoporous Materials. 2008. 110 (2–3): 501–507.

Sibu C.P., Kumar S.R., Mukundan P., Warrier K. G. K. Structural Modifications and Associated Properties of Lanthanum Oxide Doped Sol−Gel Nanosized Titanium Oxide. Che­mistry of Materials. 2002. 14(7): 2876–2881.

Zhang, W. and Pinnavaia, T.J. Rare Earth Stabilization of Mesoporous Alumina Molecular Sieves Assembled Through an N0I0 Pathway. Chemical Communication. 1998. 1185–1186.

Liqiang J., Xiaojun S., Baifu X., Baiqi W., Weimin C., Honggang F. The preparation and characterization of La doped TiO2 nanoparticles and their photocatalytic activity. Journal of Solid State Chemistry. 2004. 177(10): 3375–3382.

Hanaor D.A.H., Sorrell C.C. Review of the anatase to rutile phase transformation. Journal of Materials Science. 2011. 46(4): 855-874.

Milanović M., Nikolić L. M. Modification of TiO2 nanoparticles through lanthanum doping and PEG templating. Processing and Application of Ceramics. 2014. 8(4): 195–202.

Rebecca E. Olsen, Calvin H. Bartholomew, Baiyu Huang, Brian F. Woodfield. Synthesis and characterization of pore and stabilized mesoporous anatase titanias. Microporous and Mesoporous materials. 2014. 184: 7–14.

Huang Yu, Cao Jun-Ji, Kang Fei, You Sheng-Jie, Chang Chia-Wei, Wang Ya-Fen. High Selectivity of Visible-Light-Driven La-doped TiO2 Photocatalysts for NO Removal. Aerosol and Air Quality Research. 2017. 17: 2555–2565.

Kefeng Xie, Qiangqiang Jia, Yizhe Wang, Wenxue Zhang and Jingcheng Xu. The Electronic Structure and Optical Properties of Anatase TiO2 with Rare Earth Metal Dopants from First-Principles Calculations. Materials – 2018. 11: 179.

Stroyuk O.L., Ermokhina N.I., Korzhak G.V., Andryushina N.S., Shvalagin V.V., Kozytskiy A.V., Manoryk P.A., Barakov R.Y., Kuchmiy S.Y., Shcherbatyuk M., Sapsay V.I., Puziy A.M. Photocatalytic and photoelectrochemical properties of hierarchical mesoporous TiO2 microspheres produced using a crown template. Journal of Photochemistry and Photobiology A Chem. 2017. 334: 26–35. jphotochem.2016.10.039

Shvalagin V., Ermokhina N., Romanovska N., Barakov R., Manorik P., Sapsay V., Shcherba­kov S., Poddubnaya O., Puziy A. Mesoporous TiO2 microspheres with improved efficiency for photooxidation of volatile organic compounds. Research on Chemical Intermediates. 2019. 45(8): 4133–4148.

Ermokhina N.I., Shvalagin V.V., Romanovska N.I., Sydorova N.A., Manoryk P.A., Barakov R.Y., Shcherbatyuk M.M., Klymchuk D.O., Puziy A.M. Photocatalytic activity of mesoporous titanium dioxide stabilized with lanthanum in the gas-phase oxidation of ethanol. Theoret. and Experim. Chemistry. 2018. 53(6): 395–401.

Ermokhina N.I, Shvalagin V.V., Romanovska N.I., Manoryk P.A., Barakov R.Yu., Kompanets M.O.,•Sapsay V.I., Klymchuk D.O., Puziy A.M.. Synthesis and characterization of different binary and ternary phasemixtures of mesoporous nanocrystalline titanium dioxide. SN Applied Sciences. 2021. 3: 491.

Raevskaya A.E., Korzhak A.V., Stroyuk A.L., Kuchmii S.Ya. Photocatalytic production of hydrogen from water-alcohol media with the participation of mesoporous TiO2. Theoret. and Experim. Chemistry. 2009. 45(6): 343–348.

Ermokhina N.I., Nevinskiy V.A., Manorik P.A., Ilyin V.G., Novichenko V.N., Shcherba­tiuk M.M., Klymchuk D.O., Tsyba M.M., Puziy A.M. Synthesis and characterization of thermally stable large-pore mesoporous nanocrystalline anatase. Journal Solid State Chemistry. 2013. 200: 90–98.

Korzhak A.V., Ermokhina N.I., Stroyuk A.L., Bukhtiyarov V.K., Raevskaya A.E., Litvin V.I., Kuchmiy S.Y., Ilyin V.G., Manorik P.A. Photocatalytic hydrogen evolution over mesoporous TiO2/metal nanocomposites. J. Photochem. Photobiol. A. Chem. 2008. 198 (2): 126–134.

Schneider J., Bahnemann D., Ye J., Puma G. Li., Dionysiou D.D. Photocatalysis: fundamentals and perspectives. Royal Society of Che­mistry, Cambridge. 2016.


Download data is not yet available.