organic-inorganic perovskite, phase transformations, structural parameters, electrophysical characteristics.

How to Cite

Torchyniuk, P., V’yunov, O., Vlasyuk, V., Kostylyov, V., & Belous, A. (2022). INFLUENCE OF THE SOLVENT AND THE RATIO OF STARTING REAGENTS ON THE PROPERTIES OF ORGANIC-INORGANIC PEROVSKITE MAPbI3. Ukrainian Chemistry Journal, 88(4), 79-93.


The peculiarities of formation and properties of organiс-inorganic MAPbI3 perovskite films, obtained from solutions with different ratios of starting reagents (PbI2:MAI = 1:1,1:2, and 1:3), in the DMF and DMSO solvents, studied. As the PbI2:MAI ratio increases, the temperature of the formation of a single-phase MAPbI3 perovskite film also increases. The slight changes in the structural and electrophysical characteristics for perovskite films obtained at the  different ratios of PbI2:MAI in DMF and DMSO were found. These changes are related to the solvent that is included in the crystalline structure of perovskite. In the same ratios of starting reagents, DMF is included in the structure of perovskite in a greater amount than DMSO.


Yang Z., Zhang S., Li L., Chen W., Research progress on large-area perovskite thin films and solar modules. Journal of Materiomics. 2017. 3 (4). 231–244.

Jiang Q., Zhao Y., Zhang X., Yang X., Chen Y., Chu Z., Ye Q., Li X., Yin Z., You J., Surface passivation of perovskite film for efficient solar cells. Nature photonics. 2019. 13 (7). 460–466.

Zheng X., Chen B., Dai J., Fang Y., Bai Y., Lin Y., Wei H., Zeng X. C., Huang J., Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nature Energy. 2017. 2 (7). 1–9.

Stolterfoht M., Wolff C. M., Márquez J. A., Zhang S., Hages C. J., Rothhardt D., Alb­recht S., Burn P. L., Meredith P., Unold T., Neher D., Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells. Nature Energy. 2018. 3 (10). 847–854.

Miyata A., Mitioglu A., Plochocka P., Portugall O., Wang J. T.-W., Stranks S. D., Snaith H. J., Nicholas R. J., Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites. Nature Physics. 2015. 11 (7). 582–587.

Saba M., Quochi F., Mura A., Bongiovanni G., Excited state properties of hybrid perovskites. Accounts of Chemical Research. 2016. 49 (1). 166–173.

Han T. H., Tan S., Xue J., Meng L., Lee J. W., Yang Y., Interface and Defect Engineering for Metal Halide Perovskite Optoelectronic Devices. Advanced Materials. 2019. 31 (47). 1803515.

Zhou Y., Zhao Y., Chemical stability and instability of inorganic halide perovskites.

Energy & Environmental Science. 2019. 12 (5). 1495–1511.

Arain Z., Liu C., Yang Y., Mateen M., Ren Y., Ding Y., Liu X., Ali Z., Kumar M., Dai S., Elucidating the dynamics of solvent engineering for perovskite solar cells. Science China Materials. 2018. 62 (2). 161–172.

Jung M., Ji S.-G., Kim G., Seok S. I., Perov­skite precursor solution chemistry: from fundamentals to photovoltaic applications. Chemical Society Reviews. 2019. 48 (7). 2011–2038.

Kostylyov V. P., Sachenko A. V., Sokolovskyi I. O., Vlasiuk V. M., Torchyniuk P. V., V’yunov O. I., Belous A. G., Shkrebtii A. I., Influence of the reagents’ ratio on photoelectric and optical properties of perovskite films for photovoltaics. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2021, 24 (3). 295–303.

Torchyniuk P. V., V’yunov O. I., Kovalenko L. L., Ishchenko A. A., Kurdyukova I. V., Be­lous A. G., Influence of Solvent on Stability and Electrophysical Properties of Organic–Inorganic Perovskites Films CH3NH3PbI3. Theoretical and Experimental Chemistry. 2021. 57 (2). 113–120.

Mei A., Li X., Liu L., Ku Z., Liu T., Rong Y., Xu M., Hu M., Chen J., Yang Y., Gratzel M., Han H., A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science. 2014. 345 (6194). 295–8.

Tress W., Marinova N., Moehl T., Zakeeruddin S. M., Nazeeruddin M. K., Grätzel M., Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field. Energy & Environmental Science. 2015. 8 (3). 995–1004.

Certificate of Analysis. Standard Refe­rence Material 1976, Instrument Sensitivity Standard for X-ray Powder Diffraction. National Institute of Standards & Technology, Gaithersburg. 1991. 1–4.

McCusker L., Von Dreele R., Cox D., Lo­uеr D., Scardi P., Rietveld refinement guidelines. Journal of Applied Crystallography. 1999. 32 (1). 36–50.

Tan Q., Hinrichs K., Mao-Dong H., Fengler S., Rappich J., Prajongtat P., Nickel N. H., Dittrich T., Temperature Dependent Diffusion of DMSO in CH3NH3PbI3 Precursor Films During Layer Formation and Impact on Solar Cells. ACS Applied Energy Mate­rials. 2019. 2 (7). 5116–5123.

Matsuura N., Umemoto K., Takeda Y., Formulation of stokes’ radii in DMF, DMSO and propylene carbonate with solvent structure cavity size as parameter. Bulletin of the Chemical Society of Japan. 1975. 48 (8). 2253–2257.

Kieslich G., Sun S., Cheetham A. K., An extended Tolerance Factor approach for organic-inorganic perovskites. Chem Sci. 2015. 6 (6). 3430–3433.

Ansari M. I. H., Qurashi A., Nazeeruddin M. K., Frontiers, opportunities, and challenges in perovskite solar cells: A critical review. Journal of Photochemistry and Photobiology C: Photochemistry Reviews. 2018. 35. 1–24.


Download data is not yet available.