SYNTHESIS AND CHARACTERIZATION OF (Ba1-хSrx)7Nb4MoO20 POWDERS FOR PROTON-CONDUCTING SOLID OXIDE FUEL CELLS
№1

Keywords

solid-state synthesis, perovskite, Ba7Nb4MoO20, powder, electrolyte.

How to Cite

Bezdorozhev, O., Solodkyi, I., Ostroverkh, A., Morozov, I., Ostroverkh, Y., & Solonin, Y. (2022). SYNTHESIS AND CHARACTERIZATION OF (Ba1-хSrx)7Nb4MoO20 POWDERS FOR PROTON-CONDUCTING SOLID OXIDE FUEL CELLS. Ukrainian Chemistry Journal, 88(4), 63-78. https://doi.org/10.33609/2708-129X.88.04.2022.63-78

Abstract

This work reports on the preparation and characterization of Sr2+-doped Ba7Nb4MoO20 powders prepared by a solid-state synthesis as promising materials for solid oxide fuel cells. The influence of synthesis parameters and strontium content (x = 0; 0.05; 0.10; 0.15; 0.20) on the phase composition and properties of (Ba1-xSrx)7Nb4MoO20 powders was studied. The results of the phase analysis show that (Ba1-xSrx)7Nb4MoO20 (x = 0; 0.05; 0.10) powders with a minimum amount of secondary phases can be obtained after at least three repeated synthesis cycles at 1060–1080 оС for 10 h. According to the laser diffraction analysis, the synthesized powders comprise particles with a polydisperse size distribution spreading from 0.05 μm to 12 μm and average particle size of 2.1 μm. Electron microscopy observations support these findings and demonstrate that the particles and their aggregates have rounded irregular shape. Moreover, it was found that the morphology and particle size of the powder does not depend on the strontium content. Doping (Ba1-xSrx)7Nb4MoO20 with 15 mol.% and 20 mol.% Sr2+ leads to the formation of a significant amount of secondary phases due to exceeding the solubility limit of strontium, thus making these compositions unsuitable for use in solid oxide fuel cells.

https://doi.org/10.33609/2708-129X.88.04.2022.63-78
№1

References

Falcone P. M., Hiete M., Sapio A. Hydrogen economy and sustainable development goals: Review and policy insights. Current Opinion in Green and Sustainable Chemistry. 2021. 31: 100506. https://doi.org/10.1016/j.cogsc.2021.100506.

Abdin Z., Zafaranloo A., Rafiee A., Merida W., Lipinski W., Khalilpour K.R. Hydrogen as an energy vector. Renewable and Sustainable Ener­gy Reviews. 2020. 120: 109620. https://doi.org/10.1016/j.rser.2019.109620.

Sun T., Ocko I. B., Sturcken E., Hamburg S. P. Path to net zero is critical to climate outcome. Scientific Reports. 2021. 11: 22173. https://doi.org/10.1038/s41598-021-01639-y.

Fan L., Tu Z., Chan S. H. Resent development of hydrogen and fuel cell technologies: A review. Energy Reports. 2021. 7: 8421–8446. https://doi.org/10.1016/j.egyr.2021.08.003.

Venkataraman V., Perez-Fortes M., Wang L., Hajimolana Y. S., Boigues-Munoz C., Agostini A., McPhail S. J., Marechal F., Herle J. V., Aravind P. V. Reversible solid oxide systems for energy and chemical applications – Review & perspectives. Journal of Energy Storage. 2019. 24: 100782. https://doi.org/10.1016/j.est.2019.100782.

Abdalla A. M.,Hossain S., Petra P. M., Ghasemi M., Azad A. K. Achievements and trends of so­lid oxide fuel cells in clean energy field: a perspective review. Frontiers in Energy. 2020. 14: 359–382. https://doi.org/10.1007/s11708-018-0546-2.

Chuahy F. D. F., Kokjohn S. L. Solid oxide fuel cell and advanced combustion engine combined cycle: A pathway to 70% electrical efficiency. Applied Energy. 2019. 235: 391–408. https://doi.org/10.1016/j.apenergy.2018.10.132.

Singh M., Zappa D., Comini E. Solid oxide fuel cell: Decade of progress, future perspectives and challenges. International Journal of Hydrogen Energy. 2021. 46(54): 27643–27674. https://doi.org/10.1016/j.ijhydene.2021.06.020.

Azizi M. A., Brouwer J. Progress in solid oxide fuel cell-gas turbine hybrid power systems: System design and analysis, transient operation, controls and optimization. Applied Energy. 2018. 215: 237–289. https://doi.org/10.1016/j.apenergy.2018.01.098.

Zhang W., Hu Y. H. Progress in proton-conducting oxides as electrolytes for low-tempera­ture solid oxide fuel cells: From materials to devices. Energy Science and Engineering. 2021. 9: 984–1011. https://doi.org/10.1002/ese3.886.

Kreuer K. D. Proton-conducting oxides. Annual Review of Materials Research. 2003. 33: 333–359. https://doi.org/10.1146/annurev.matsci. 33.022802.091825.

Dubois A., Ricote S., Braun R. J. Benchmarking the expected stack manufacturing cost of next generation, intermediate-temperature protonic ceramic fuel cells with solid oxide fuel cell technology. Journal of Power Sources. 2017. 369: 65–77. https://doi.org/10.1016/j.jpowsour.2017.09.024.

Singh K., Kannan R., Thangadurai V. Perspective of perovskite-type oxides for proton conducting solid oxide fuel cells. Solid State Ionics. 2019. 339: 114951. https://doi.org/10.1016/j.ssi.2019.04.014.

Hossain M. K., Chanda R., El-Denglawey A., Emrose T., Rahman M. T., Biswas M. C., Hashizume K. Recent progress in barium zirconate proton conductors for electrochemical hydrogen device applications: A review. Ceramics International. 2021. 47(17): 23725–23748. https://doi.org/10.1016/j.ceramint.2021.05.167.

Hossain S., Abdalla A. M., Jamain S. N. B., Zaini J. H., Azad A. K. A review on proton conducting electrolytes for clean energy and intermediate temperature-solid oxide fuel cells. Renewable and Sustainable Energy Reviews. 2017. 79: 750–764. https://doi.org/10.1016/j.rser.2017.05.147.

Irvine J., Rupp J. L. M., Liu G., Xu X., Haile S., Qian X., Snyder A., Freer R., Ekren D., Skinner S., Celikbilek O., Chen S., Tao S., Shin T. H., O'Hayre R., Huang J., Duan C., Papac M., Li S., Celorrio V., Russell A., Hayden B., Nolan H., Huang X., Wang G., Metcalfe I., Neagu D., Martín S. G. Roadmap on inorganic perovskites for energy applications. Journal of Physics: Energy. 2021. 3(3): 031502. https://doi.org/10.1088/2515-7655/abff18.

Li J., Wang C., Wang X., Bi L. Sintering aids for proton-conducting oxides – A double-edged sword? A mini review. Electrochemistry Communications. 2020. 112: 106672. https://doi.org/10.1016/j.elecom.2020.106672.

Fop S., McCombie K. S., Wildman E. J. High oxide ion and proton conductivity in a disordered hexagonal perovskite. Nature Materials. 2020. 19: 752–757. https://doi.org/10.1038/s41563-020-0629-4.

Yashima M., Tsujiguchi T., Sakuda Y., Yasui Y., Zhou Y., Fujii K., Torii S., Kamiyama T., Skinner S. J. High oxide-ion conductivity through the interstitial oxygen site in Ba7Nb4MoO20-based hexagonal perovskite related oxides. Nature Communications. 2021. 12: 556. https://doi.org/10.1038/s41467-020-20859-w.

Fop S., Dawson J. A., Fortes A. D., Ritter C., McLaughlin A. C. Hydration and ionic conduction mechanisms of hexagonal perovskite derivatives. Chemistry of Materials. 2021. 33(12): 4651–4660. https://doi.org/10.1021/acs.chemmater.1c01141.

Gaft M., Reisfeld R., Panczer G. Modern luminescence spectroscopy of minerals and materials. Berlin: Springer, 2005. 345 p.

Garcia-Gonzalez E., Parras M., Gonzalez-Calbet J. M. Crystal structure of an unusual polytype: 7H-Ba7Nb4MoO20. Chemistry of Materials. 1999. 11(2): 433–437.

https://doi.org/10.1021/cm981011i.

Perry D. L. Handbook of inorganic compounds. Boca Raton: CRC Press, 2011. 554 p.

Patterson A. L. The Scherrer formula for X-Ray particle size determination. Physical Review. 1939. 56(10): 978–982. https://doi.org/10.1103/PhysRev.56.978.

Klung H.P., Alexander L.E. X-ray diffraction procedures: For polycrystalline and amorphous materials. New York: Wiley, 1974. 992 p.

Wu J., Davies R. A., Islam M. S., Haile S. M. Atomistic study of doped BaCeO3: dopant site-selectivity and cation nonstoichiometry. Chemistry of Materials. 2005. 17(4): 846–851. https://doi.org/10.1021/cm048763z.

Gdula-Kasica K., Mielewczyk-Gryn A., Lendze T., Molin S., Kusz B., Gazda M. Synthesis of acceptor-doped Ba-Ce-Zr-O perovskites. Crystal Research and Technology. 2010. 45(12): 1251–1257. https://doi.org/10.1002/crat.201000380.

Gusak A. M. Diffusion-controlled solid state reactions in alloys, thin-films, and nanosystems. Weinheim: WILEY-VCH Verlag GmbH & Co., 2010. 475 p.

Tretyakov Yu. D. Solid-phase reactions. Moscow: Khimiya, 1978. 360 p. (in Russian).

Arora S. K., Trivikrama Rao G. S. Electrical conductivity of BaMoO4 single crystals. Crystal Research and Technology. 1982. 17(10): 1303–1305. https://doi.org/10.1002/crat.2170171023.

Malyi O. I., Yeung M. T., Poeppelmeier K. R., Persson C., Zunger A. Spontaneous non-stoi­chiometry and ordering in degenerate but gapped transparent conductors. Matter. 2019. 1(1): 280–294. https://doi.org/10.1016/j.matt.2019.05.014.

Unti L. F. K., Grzebielucka E. C., Chinelatto A. S. A., Mather G. C., Chinelatto A. L. Synthesis and electrical characterization of Ba5Nb4O15 and Ba5Nb3.9M0.1O(15-δ) (M = Ti, Zr) hexagonal perovskites. Ceramics International. 2019. 45(4): 5087–5092. https://doi.org/10.1016/j.ceramint.2018.11.211.

Black D. L., McQuay M. Q., Bonin M. P. Laser-based techniques for particle-size measurement: A review of sizing methods and their industrial applications. Progress in Energy and Combustion Science. 1996. 22(3): 267–306. https://doi.org/10.1016/S0360-1285(96)00008-1.

Averardi A., Cola C., Zeltmann S. E., Gupta N. Effect of particle size distribution on the packing of powder beds: A critical discussion relevant to additive manufacturing. Materials today communications. 2020. 24: 100964. https://doi.org/10.1016/j.mtcomm.2020.100964.

Yeh T.-S., Sacks M. D. Effect of particle size distribution on the sintering of alumina. Journal of the American Ceramic Society. 1988. 71(12): C-484–C-487. https://doi.org/10.1111/j.11512916.1988.tb05812.x.

Bai Y., Wagner G., Williams C. B. Effect of particle size distribution on powder packing and sintering in binder jetting additive manufacturing of metals. Journal of Manufacturing Science and Engineering. 2017. 139(8): 081019. https://doi.org/10.1115/1.4036640.

Shiau F.-S., Fang T.-T., Leu T.-H. Effect of particle-size distribution on the microstructural evolution in the intermediate stage of sintering. Journal of the American Ceramic Society. 1997. 80(2): 286–290. https://doi.org/ 10.1111/j.1151-2916.1997.tb02828.x.

Olsson E., Larsson P.-L. On the effect of particle size distribution in cold powder compaction. Journal of Applied Mechanics. 2012. 79(5): 051017. https://doi.org/10.1115/1.4006382.

Dirksen J. A., Ring T. A. Fundamentals of crystallization: Kinetic effects on particle size distributions and morphology. Chemical Engineering Science. 1991. 46(10): 2389–2427. https://doi.org/10.1016/0009-2509(91)80035-W.

Downloads

Download data is not yet available.