Abstract
Complexation in M (II) – Rut systems (M(II) = Co, Cu) was studied by electron absorption spectroscopy and pH-metric titration in water-ethanol solutions depending on the metal: ligand ratio (1: 1; 2: 1) and the pH of the medium. It was shown that the structure and stoichiometric composition of the complexation reaction products are influenced by such basic parameters as L:M and the pH value of the medium. Depending on the pH value, chelation involves certain binding sites, which primarily is associated with the redistribution of the electron density in the flavonoid molecule. In a weakly acidic or neutral medium, regardless of the M(II): Rut ratio, the formation of monoligand complexes of rutin with 3-d metals occurs with the participation of 5-OH and 4-C=O fragments of the A and C rings, and in an alkaline medium, chelation proceeds on the catecholic fragment of ring B rutin. Biligand complexes are formed with the participation of the gydroxo groups of the catechol fragment of each rutin molecule, and the formation of compounds with a ratio of 2:1 occurs both due to 5-OH and 4C=O and due to 3 ', 4'-OH groups. The calculated values of the stability constants of the complexes showed that the stability of the Co (II) complexes is several orders of magnitude lower than the stability of the corresponding Cu (II) complexes.
References
Chebil L., Humeau C., Anthoni J., Dehez F., Engasser J.-M., Ghoul M. Solubility of Flavonoids in Organic Solvents. J. Chem. Eng. 2007. 52: 1552.
Tarakhovsky Yu.S., Kim Yu.A., Abdrasilov B.S., Muzafarov E.N. Flavonoids: biochemistry, biophysics, medicine (Pushchino: Sуnchrobook, 2013) [in Russian].
Malesev D., Kuntic V. Investigation of metal-flavonoid chelates and the determination of flavonoids via metal-flavonoid complexing reactions. J. Serb. Chem. Soc. 2007, 72: 921.
Oyvind M., Kenneth R. Markham Andersen Flavonoids: Chemistry, Biochemistry and Applications.(CRC Press Taylor & Francis Group, 2006).
Heim K.E., Tagliaferro A.R., Bobilya D. J. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J. Nutrit. Biochem. 2002.13: 572.
Cushnie T.P., Lamb A.J. Antimicrobial activity of flavonoids. J Antimicrob Agents. 2005. 26 (5): 343.
Yang J., Guo J., Yuan J. In vitro antioxidant properties of rutin. Food Science and Technology. 2008. 41 (6): 1060.
Crozier A., Jaganath I.B., Clifford M.N. Dietary phenolics: chemistry, bioavailability and effects on health. Nat Prod Rep. 2009. 26: 1001.
Marzena Symonowicz, Mateusz Kolanek. Flavonoids and their properties to form chelate Complexes. Biotechnol Food Sci. 2012. 76 (1): 35–41.
Al-Dhabi, N. A., Arasu, M. V., Park, C. H., & Park, S. U. An up-to-date review of rutin and its biological and pharmacological activities. EXCLI journal. 2015. 14: 59.
Ganeshpurkar A., Saluja A.K. The pharmacological potential of rutin. Saudi pharmaceutical J. 2017 25 (2): 149.
Kuzniak A., Pusz J., Maciolek U. Potentiometric study of Pd (II) complexes of some flavonoids in water-methanol-1, 4-dioxane-acetonitrile (MDM) mixture. Acta poloniae pharmaceutica. 2017. 74 (2): 369.
Erkoc S., Erkoc F., Keskin N. Theoretical investigation of quercetin and its radical isomers.
J. Mol. Struct. Theochem. 2003. 631: 141.
Satterfield M. Brodbelt J.S. Enhanced Detection of Flavonoids by Metal Complexation and Electrospray Ionization Mass Spectrometry. Anal. Chem. 2000. – P. 5898–5906.
Kasprzak M. M., Erxleben A., Ochocki J. Properties and applications of flavonoid metal complexes. RSC Advances. 2015 5(57): 45853.
Hu Y.J., Yue H.L., Li X.L., Zhang S.S., Tang E., Zhang L.P. () Molecular spectroscopic studies on the interaction of morin with bovine serum albumin. J.Photochem.Photobiol.B. 2012. 112: 16.
Grazul M., Budzisz E. Biological activity of metal ions complexes of chromones, coumarins and flavones. Coordin.Chem. 2009. 83: 363.
Ravishankar D., Rajora A.K., Greco F., Osborn H.M. (). Flavonoids as prospective compounds for anti-cancer therapy. The international journal of bioch. & cell biology. 2013. 45 (12): 2821.
Selvaraj S., Krishnaswamy S., Devashya V., Sethuraman S., Krishnan U.M. Flavonoid–metal ion complexes: a novel class of therapeutic agents. Medicinal Research Reviews, 2014. 34(4): 677.
Kostyuk V.A., Potapovich A.I., Vladykovskaya E.N., Korkina L.G., Afanas'ev I.B. Influence of metal ions on flavonoid protection against asbestos-induced cell injury. Arch Biochem Biophy. 2001. (385): 129.
De Souza R.F., Sussuchi E.M., De GiovaniW.F. (). Synthesis, electrochemical, spectral, and antioxidant properties of complexes of flavonoids with metal ions. Synthesis and reactivity in inorganic and metal-organic chemistry. 2003. 33 (7): 1125.
Bratu M.M., Birghila S.E.M.A.G.H.I U.L., Miresan H., Negreanu-Pirjol T., Prajitura C., Calinescu M. Biological activities of Zn (II) and Cu (II) complexes with quercetin and rutin: Antioxidant properties and UV-protection capacity. Rev. Chim.(Bucharest). 2014. 65: 544.
Khater M., Ravishankar D., Greco F., Osborn H. Metal complexes of flavonoids: their synthesis, characterization, and enhanced anti-oxidant and anti-cancer activities. Future Medicinal Chemistry 2019. 11 (21): 2845.
Brown J.E., Khodor H, Hider R.C., Rice-Evans C.A. Structural dependence of flavonoid interactions with Cu2+ ions: implications for their antioxidant properties. Biochemical Journal. 1998. 330 (3): 1173.
Anafas'ev I.B., Ostrakhovitch E.A., Mikhal V., Ibragimova L., Korkina G.A. Enhancement of antioxidant and anti-inflammatory activities of bioflavonoid rutin by complexation with transition metals. Biochem Pharmacol. 2001. 61: 677.
Takamura K., Sakamoto M. Spectrophotometric Studies on flavonoid-Copper(II) Complexes in Methanol Solution. Chem. Pharm. Bull. 1978. 26 (8): 2291.
Malešev D., Radović Z., Jelikić-Stankov M., Bogavac M. Investigation of Molybdate(II)-Rutin Complex and the Determination of theDissociation Constant of Rutin in Water-Ethanol Mixture. Analytical Letters. 1991. 24 (7): 1159.
Kuzniak A., Pusz J., Maciolek U. (). Potentiometric study of Pd (II) complexes of some flavonoids in water-methanol-1, 4-dioxane-acetonitrile (MDM) mixture. Acta poloniae pharmaceutica. 2017. 74(2): 369.
Zhang L., Liu Y., Wang Y., Xu M., Hu X. UV–Vis spectroscopy combined with chemometric study on the interactions of three dietary flavonoids with copper ions. Food chemistry. 2018. 263: 208.
Peng B., Li R., Yan W. Solubility of rutin in ethanol+ water at (273.15 to 323.15) K. Journal of Chemical & Engineering Data. 2009. 54(4): 1378.
Zi J., Peng B., Yan W. Solubilities of rutin in eight solvents at T=283.15, 298.15, 313.15, 323.15, and 333.15 K. Fluid Phase Equilibria. 2007. 261(1–2): 111.
Williams D., Metals of Life . (M.: Mir, 1975) [in Russian].
Pribil R., Komplexone in der chemischen Analyse (VEB Deutscher Verlag der Wissenschaften, Berlin, 1961).
Saprykova Z.A. Boos G.A., Zakharov A.V. Physicochemical methods for the study of coordination compounds in solutions (Kazan: Publishing House. Kazan University, 1988) [in Russian].
Bukhari S.B., Memon S., Mahroof Tahir M., Bhanger M.I. () Synthesis, characterization and antioxidant activity copper-quercetin complex. Spectrochim. Acta Part A: Molecular and Biomolecular Spectroscopy. 2009. 71(5): 1901.
Kholin Yu.V. Quantitative physicochemical analysis of complexation in solutions and on the surface of chemically modified silicas: meaningful models, mathematical methods and their applications. – (Kharkiv: Folio, 2000) [in Russian].
Graciela M. Escandar, Luis F. Sala Complexing behavior of rutin and quercetin. Can. J. Chem. 1991. 69 (12): 1994.
Lipkovska N.A., Barvinchenko V.N., Fedyanina T.V., Rugal A.A. Physicochemical Properties of Quercetin and Rutin in Aqueous Solutions of Decamethoxin Antiseptic Drug. Russian Journal of Applied Chemistry. 2014. 87 (1): 36.
Torreggani A., Tamba M., Trinchero A., Bonora S. Copper (II)-Quercetin complexes in aqueous solutions: spectroscopic and kinetic properties. J. Molec. Struct. 2005. 744: 759.
Bjerrum Ya. Formation of metal amines in an aqueous solution (Theory of reversible step reactions). (M.: IL, 1961) [in Russian].