morin, complex compounds, fluorescence, analysis, metal ions, protein.

How to Cite



The review describes modern physicochemical systems based on complex compounds with organic ligands, which may have fluorescent properties when interacting with metal ions or proteins. Modern methods of synthesis of these compounds and their use in physical-chemical methods of analysis are given. Approaches to detecting the content of metals and proteins using the fluorescent properties of morin complex compounds are considered. Areas of use of the effects of amplification and quenching of fluorescence for the determination of organic compounds and metal ions, especially in the presence of DNA and RNA of different biological origin are described. The influence of surfactants on the fluorescence intensity of complexes with morin was analyzed separately.


Rettig W., Strehmel B., Schrader S., & Sei­fert H. (Eds.). Applied fluorescence in chemistry, bio­logy and medicine. Springer Science & Business Media. 2012.

Kulmyrzaev A. A., Karoui R., De Baerdemaeker J., & Dufour E. Infrared and fluorescence spectroscopic techniques for the determination of nutritional constituents in foods. International Journal of Food Properties. 2007. 10 (2): 299–320.

Kato A., & Nakai S. Hydrophobicity determined by a fluorescence probe method and its correlation with surface properties of proteins. Biochimica et biophysica acta (BBA)-Protein structure. 1980. 624(1): 13–20.

Jin H. G. Z. X. O. Application of Chemiluminescent Image to Biological Molecules Detection. World Sci-tech R & D, 04. 2004.

Paramita V. D., & Kasapis S. The role of structural relaxation in governing the mobility of linoleic acid in condensed whey protein matrices. Food Hydrocolloids. 2018. 76. 184–193.

Tran T. M., Dai T. X. T., Tran D. B., Nguyen Q. C. T., & Nguyen D. H. Y. A simple spectrophotometric method for quantifying total lipids in plants and animals. Can Tho University Journal of Science. 2019. 11(2): 106–110.

Gazioglu I., Zengin O. S., Tartaglia A., Locatelli M., Furton K. G., & Kabir A. Determination of polycyclic aromatic hydrocarbons in nutritional supplements by fabric phase sorptive extraction (FPSE) with high-performance liquid chromatography (HPLC) with fluorescence detection. Analytical Letters. 2020. 54(10): 1683–1696.

Abd Ali L. I., Qader A. F., Salih M. I., & Aboul-Enein H. Y. Sensitive spectrofluorometric method for the determination of ascorbic acid in pharmaceutical nutritional supplements using acriflavine as a fluorescence reagent. Luminescence. 2019. 34(2): 168–174.

Muñoz-Huerta R. F., Guevara-Gonzalez R. G., Contreras-Medina L. M., Torres-Pacheco I., Prado-Olivarez J., & Ocampo-Velazquez R. V. A review of methods for sensing the nitrogen status in plants: advantages, disadvantages and recent advances. Sensors. 2013. 13(8): 10823–10843.

Panche A. N., Diwan A. D., & Chandra S. R. Flavonoids: an overview. Journal of nutritional science, 5. 2016.

Harborne J. B., Marby H., & Marby T. J. The flavonoids. Springer. 2013.

Parker C. A., & Harvey L. G. Luminescence of some piazselenols. A new fluorimetric reagent for selenium. Analyst. 1962. 87(1036): 558–565.

Vickers M. S., Martindale K. S., & Beer P. D. Imidazolium functionalised acyclic ruthenium (II) bipyridyl receptors for anion recognition and luminescent sensing. Journal of Materials Chemistry. 2005. 15(27–28): 2784–2790.

Yoshida T., Uetake A., Yamaguchi H., Nimura N., & Kinoshita T. New preparation me­thod for 9-anthryldiazomethane (ADAM) as a fluorescent labeling reagent for fatty acids and derivatives. Analytical biochemistry. 1988. 173(1): 70–74.

Tsuchiya H., Hayashi T., Naruse H., & Takagi N. High-performance liquid chromato­graphy of carboxylic acids using 4-bromomethyl-7-acetoxycoumarin as fluorescence reagent. Journal of Chromatography A. 1982. 234(1): 121–130.

Arakawa Y., Wada O., & Manabe M. Extraction and fluorometric determination of organotin compounds with Morin. Analytical Chemistry. 1983. 55(12): 1901–1904.

.Cao L. W., Wang H., Li J. S., & Zhang H. S. 6-Oxy-(N-succinimidyl acetate)-9-(2'-methoxycarbonyl) fluorescein as a new fluorescent labeling reagent for aliphatic amines in environmental and food samples using high-performance liquid chromatography. Journal of Chromatography A. 2005. 1063(1-2): 143–151.

Roth M. Fluorescence reaction for amino acids. Analytical Chemistry. 1971. 43(7): 880–882.

Fan J., Guo H. Q., & Feng S. L. Spectrofluorimetric determination of pentachlorophenol based on its inhibitory effect on the redox reaction between hydroxyl radicals and fluorescent dye rhodamine B. 2007.

Andersen N. R., & Hercules D. M. Fluorometric Determination of Uranium with Rhodamine B. Analytical Chemistry. 1964. 36(11): 2138–2141.

Chen T., Tong A., & Zhou, Y. 2-Amino-5, 7-dimethyl-1, 8-naphthyridine as a fluorescent reagent for the determination of nitrite. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2007. 66(3): 586–589.

Lee J. H., Jeong A. R., Shin I. S., Kim H. J., & Hong J. I. Fluorescence turn-on sensor for cyanide based on a cobalt (II) − coumarinylsalen complex. Organic letters. 2010. 12(4): 764–767.

Ensafi A. A., Hajian R., & Ebrahimi S. Study on the interaction between morin-Bi (III) complex and DNA with the use of methylene blue dye as a fluorophor probe. Journal of the Brazilian Chemical Society. 2009. 20(2): 266–276.

Malešev D., & Kuntić V. Investigation of me­tal-flavonoid chelates and the determination of flavonoids via metal-flavonoid complexing reactions. Journal of the Serbian chemical society. 2007. 72(10): 921–939.

Sawada T., Shibamoto T., & Kamada H. Fluo­rescence Lifetime Measurements of Morin–Metal Ion Complexes. Bulletin of the Chemical Society of Japan. 1978. 51(6): 1736–1738.

Carroll M. K., Bright F. V., & Hieftje G. M. Fi­ber-optic time-resolved fluorescence sensor for the simultaneous determination of aluminum (3+) and gallium (3+) or indium (3+). Analy­tical Chemistry. 1989. 61(15): 1768–1772.

Domínguez-Renedo O., Navarro-Cuñado A. M., Ventas-Romay E., & Alonso-Lomillo M. A. Determination of aluminium using different techniques based on the Al (III)-morin complex. Talanta. 2019. 196: 131–136.

Gutierrez A. C., & Gehlen M. H. Time resolved fluorescence spectroscopy of quercetin and morin complexes with Al3+. Spectrochi­mica Acta Part A: Molecular and Biomolecular Spectroscopy. 2002. 58(1): 83–89.

Saari L. A., & Seitz W. R. Immobilized mo­rin as fluorescence sensor for determination of aluminum (III). Analytical Chemistry. 1983. 55(4): 667–670.

Zhou J., Gong G. Q., Zhang Y. N., Qu J. Q., Wang L. F., & Xu J. W. Quercetin–La (III) complex for the fluorimetric determination of nucleic acids. Analytica chimica acta. 1999. 381(1): 17–22.

Mondal B., Kumar P., Ghosh P., & Kalita A. Fluorescence-based detection of nitric oxide in aqueous and methanol media using a copper (II) complex. Chemical Communications. 2011. 47(10): 2964–2966.

Nizar S. A., & Suah F. B. M. Effect of room temperature ionic liquid on the formation of the complex oxalate-sodium morin-5-sulfonate-aluminium (III): Application to the fluo­rescence determination of oxalate ion. Journal of fluorescence. 2016. 26(4): 1167–1171.

Ci Y. X., Li Y. Z., & Liu X. J. Selective determination of DNA by its enhancement effect on the fluorescence of the Eu3+-tetracycline complex. Analytical Chemistry. 1995. 67(11): 1785–1788.

Chongqiu J., & Li L. Lysozyme enhanced euro­pium–metacycline complex fluorescence: a new spectrofluorimetric method for the determination of lysozyme. Analytica chimica acta. 2004. 511(1): 11–16.

Wang H., Wang W. S., & Zhang H. S. A spectrofluorimetric method for cysteine and glutathione using the fluorescence system of Zn (II)–8-hydroxyquinoline-5-sulphonic acid complex. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2001. 57(12): 2403–2407.

Huang W., Cao N., & Wang F. Determination of Serum Albumin by its quenching effect on the fluorescence of Zn 2-Morin complex. 2016.

Butour J. L., & Macquet J. P. Platinum determination in DNA-platinum complexes by fluorescence spectrophotometry. Analytical biochemistry. 1978. 89(1): 22–30.

Ma B., Zeng F., Zheng F., & Wu S. A. Fluorescence Turn – on Sensor for Iodide Based on a Thymine – HgII – Thymine Complex. Chemistry – A European Journal. 2011. 17(52): 14844–14850.

Fan Y. X., & Zheng Y. X. Effect of cationic micelles on the fluorescence of the zirconium – morin complex. Analytica chimica acta. 1993. 281(2): 353–360.

Hui‐Ming S., Wan‐Cang C., & Ru‐Ji W. Sensitization of surfactant on the fluorescent

reactions of metals. Acta Chimica Sinica English Edition. 1984. 2(2): 133–143.

Suah F. B. M., Ahmad M., & Mehamod F. S. Effect of non-ionic surfactants to the Al (III)-­morin complex and its application in determination of Al (III) ions: A preliminary study [Kesan surfaktan tak-ionik kepada kompleks Al (III)-morin dan aplikasinya dalam penentuan ion Al (III): Satu kajian awal]. Malaysian Journal of Analytical Sciences. 2017.

Wang F., Yang J., Wu X., Sun C., Liu S., Wang F., & Jia Z. Fluorescence enhancement effect of the morin–Al3+–sodium dodecyl benzene sulphonate – protein system and the determination of proteins. Luminescence: The journal of biological and chemical luminescence. 2006. 21(1): 49–55.

Al-Kindy S. M. Z., Suliman F. O., & Salama S. B. A sequential injection method for the determination of aluminum in drinking water using fluorescence enhancement of the aluminum – morin complex in micellar media. Microchemical journal. 2003. 74(2): 173–179.

Zeng Z., & Jewsbury R. A. Fluorimetric determination of iron using 5-(4-methoxyphenylazo)-8-(4-toluenesulfonamido) quinoline. Analyst. 2000. 125(9): 1661–1665.

Escriche J. M., Cirugeda M. D. L. G., & Hernandez F. H. Increase in the sensitivity of the fluorescent reaction of the complexing of aluminium with morin using surfactant agents. Analyst. 1983. 108(1292): 1386–1391.

Ci Y., & Lan Z. Fluorometric determination of samarium and gadolinium by enhancement of fluorescence of samarium-thenoyltrifluoro­acetone-1, 10-phenanthroline ternary complex by gadolinium. Analytical Chemistry. 1989. 61(10): 1063–1069.

Arnaud N., & Georges J. Sensitive detection of tetracyclines using europium-sensitized flu­orescence with EDTA as co-ligand and cetyltrimethylammonium chloride as surfactant. Analyst. 2001. 126(5): 694–697.

Lu R. C., Cao A. N., Lai L. H., & Xiao J. X.. Effect of anionic surfactant molecular structure on bovine serum albumin (BSA) fluorescence. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2006. 278(1–3): 67–73.

Wei, F., Ten, E., & Wu, Z.. Enhancement of the fluorescence of the beryllium-morin complex by non-ionic surfactants. Talanta. 1990. 37(9): 947–950.

Howard, A. G., Coxhead A. J., Potter I. A., & Watt A. P. Determination of dissolved aluminium by the micelle-enhanced fluorescence of its lumogallion complex. Analyst. 1986. 111(12): 1379–1382.


Download data is not yet available.