fullerene C70 hydrosol, electrokinetic potential, sodium chloride, cetyltrimethylammonium chloride, critical concentration of coagulation, Derjaguin–Landau–Verwey–Overbeek theory, Hamaker diagram, fullerene–fullerene Hamaker constant, structural contribution to the inter-particle interaction.

How to Cite

Mchedlov-Petrossyan, N., Marfunin, M., Klochkov , V., & Radionov, P. (2021). HYDROSOL OF C70 FULLERENE: SYNTHESIS AND STABILITY IN ELECTROLYTIC SOLUTIONS. Ukrainian Chemistry Journal, 87(10), 63-73. https://doi.org/10.33609/2708-129X.87.10.2021.63-73


This article is devoted to the synthesis and characterization of the hydrosol of C70 of the son/nC70 type and to its coagulation by sodium chloride and cetyltrimethylammonium bromide (CTAB). At C70 concentration of 3.3×10–6 M, the electrokinetic potential is ζ= –40 ± 4 mV, the particle size expressed as Zeta-average is 97±3 nm; at higher C70 concentrations, 1.7×10–5 and 6.9×10–5 M, the size stays the same: 99 – 100 nm. The critical concentration of coagulation (CCC) values, were determined using the diameter increasing rate (DIR) on NaCl concentration. The CCCs are concentration-dependent: 250, 145, and 130 mM at C70 concentrations 3.3×10–6, 1.7×10–5, and 6.9×10–5 M, respectively. The CCC for the CTAB surfactant is much lower, about 5×10–3 mM. At 0.02 mM CTAB, however, the overcharging up to ζ = + 40 mV and stabilization of the colloidal particles take place. Interpretation of the hydrosol coagulation by NaCl using the Derjaguin–Landau–Verwey–Overbeek theory makes it possible to determine the Hamaker constant of the C70–C70 interaction in vacuum, if only electrostatic repulsion and molecular attraction are taking into account: AFF ≈ 7×10–20 J. On the other hand, if we use the value AFF = (16.0–16.6)×10–20 J, obtained earlier in the study of organosols, then the data for hydrosols can be explained only by the introduction of an additional type of interactions. Following the terms of Churaev and Derjaguin, one should take into account the structural contribution to the interaction energy, which stabilizes the hydrosol.




Kyzyma O. A. Liquid systems with fullerenes in organic solvents and aqueous media. Ukrainian J. Phys. 2020. 65 (9): 761–767. https://doi.org/10.15407/ujpe65.9.761

Mchedlov-Petrossyan N.O. Fullerenes in aqueous media: A review. Theoretical and Experimental Chemistry. 2020. 55 (6): 361–391. https://doi.org/10.1007/s11237-020-09630-w

Kharissova O. V., OlivaGonzїález C. M., Kha­risov B.L. Solubilization and Dispersion of Carbon Allotropes in Water and Non-Aqueous Solvents. Industrial & Engineering Che­mistry Research. 2018. 57 (38): 12624–12645. https://doi.org/10.1021/acs.iecr.8b02593

Mikheev I. V., Sozarukova M. M., Izmailov D. Yu, Kareev I. E., Proskurnina E. V., Pros­kurnin M. A. Antioxidant Potential of Aqueous Dispersions of Fullerenes C60, C70, and Gd@C82. International Journal of Molecular Sciences 2021. 22 (5838): 1–13. https://doi.org/10.3390/ijms22115838

Mikheev I. V., Pirogova M. O., Usoltseva L. O., Uzhel A. S., Bolotnik T. A., Kareev I. E., Bubnov V. P., Lukonina N. S., Volkov D. S., Goryunkov A. A., Korobov M. V., Proskurnin M. A. Green and rapid preparation of long-term stable aqueous dispersions of fullerenes and endohedral fullerenes: The pros and cons of an ultrasonic probe. Ultrasonics Sonochemistry. 2021. 73: 105533. https://doi.org/10.1016/j.ultsonch.2021.105533

Damasceno J. P. V., Hof F., Chauvet O., Zarbin A. J. G., Pénicaud A. The role of functiona­lization on the colloidal stability of aqueous fullerene C60 dispersions prepared with fullerides. Carbon. 2021. 173: 1041–1047. https://doi.org/10.1016/j.carbon.2020.11.082

Wei X., Wu M., Qi L., Xu Z., Selective solution-phase generation and oxidation reaction of C60n- (n = 1,2) and formation of an aqueous colloidal solution of C60. J. Journal of the Chemical Society, Perkin Transactions 2. 1997. 1389–1394. https://doi.org/10.1039/a607336k

Noneman K., Muhich C., Ausman K., Henry M., Jankowski E. Molecular simulations for understanding the stabilization of fullerenes in water. Journal of Computational Science Education. 2021. 12 (1): 39–48. https://doi.org/10.22369/issn.2153-4136/12/1/6

Murdianti B. S., Damron J. T., Hilburn M. E., Maples R. D., HikkaduwaKoralege R. S., Ku­ri­yavar S. I., Ausman K. D. C60 Oxide as a Key Component of Aqueous C60 Colloidal Suspensions. Environmental Science & Technology. 2012. 46: 7446−7453. https://dx.doi.org/10.1021/es2036652

Mchedlov-Petrossyan N. O., Marfunin M. O. Formation, Stability, and Coagulation of Fullerene Organosols: C70 in Acetonitrile–To­luene Solutions and Related Systems. Langmuir. 2021. 37 (23): 7156–7166. https://doi.org/10.1021/acs.langmuir.1c00722.

Mchedlov-Petrossyan N. O., Al-Shuuchi Y. T. M., Kamneva N. N., Marynin A. I. , Klochkov V. K. The Interactions of the Nanosized Aggregates of Fullerene C60 with Electrolytes in Methanol: Coagulation and Overcharging of Particles. Langmuir. 2016. 32 (39): 10065–10072. http://dx.doi.org/10.1021/acs.langmuir.6b02533

Mchedlov-Petrossyan N. O., Kamneva N. N., Al-Shuuchi Y. T .M., Marynin A. I. Interaction of C60 aggregates with electrolytes in acetonitrile. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2017. 516: 345–353. http://dx.doi.org/10.1016/j.colsurfa.2016.12.035

Chen K. L., Elimelech M. Aggregation and deposition kinetics of fullerene (C60) nanoparticles. Langmuir. 2006. 22 (26): 10994-11001. https://doi.org/10.1021/la062072v

Chen K. L., Elimelech M. Relating colloidal stability of fullerene (C60) nanoparticles to nanoparticle charge and electrokinetic pro­perties. Environmental Science & Technology. 2009. 43 (19): 7270–7276. https://doi.org/10.1021/es900185p

Meng Z., Hashmi S. M., Elimelech M. Aggregation rate and fractal dimension of fullerene nanoparticles via simultaneous multiangle static and dynamic light scattering measurement. Journal of Colloid and Interface Science. 2013. 392: 27–33. https://doi.org/10.1016/j.jcis.2012.09.088

Aich N., Flora J. R. V., Saleh N. B. Preparation and characterization of stable aqueous higher-order fullerenes. Nanotechnol. 2012. 23 (055705): 1–9. http://doi.org/10.1088/0957-4484/23/5/055705

Aich N., Boateng L. K., Sabaraya I. V. Das D., Flora J. R. V., Saleh N. B. Aggregation Kinetics of Higher-Order Fullerene Clusters in Aqua­tic Systems. Environmental Science & Technology. 2016. 50 (7): 3562–3571. https://doi.org/10.1021/acs.est.5b05447

Mikheev I. V., Bolotnik T. A., Volkov D. S., Korobov M.V., Proskurnin M. A. Approaches to the determination of C60 and C70 fullerene and their mixtures in aqueous and organic solutions. Nanosystems: Physics, Chemistry, Mathematics. 2016. 7 (1): 104–110. https://doi.org/10.17586/2220-8054-2016-7-1-104-110

Delgado A. V., González-Caballero F., Hunter R. J., Koopal L. K., Lyklema J. Measurement and interpretation of electrokinetic phenomena. Journal of Colloid and Interface Science 2007. 309: 194–224. https:/doi.org/10.1016/j.jcis.2006.12.075

Ohshima H. A simple expression for Henry's function for the retardation effect in electrophoresis of spherical colloidal particles. Journal of Colloid and Interface Science 1994. 168: 269–271. https://doi.org/10.1006/jcis.1994.1419

Miheev I. V. Diss. kand.him. nauk. Moskva: MGU, 2018.

Mchedlov-Petrossyan N. O., Klochkov V. K., Andrievsky G. V. Colloidal dispersions of fullerene in water: some properties and regularities of coagulation by electrolytes. Journal of the Chemical Society, Faraday Transactions. 1997. 93 (24): 4343–4346. https://doi.org/10.1039/A705494G

Wang W., Gu B., Liang L., Hamilton W.B. Adsorption and Structural Arrangement of Cetyltrimethylammonium Cations at the Si­lica Nanoparticle−Water Interface. Journal of Physical Chemistry B. 2004. 108 (45): 17477–17483. https://doi/10.1021/jp048325f

Gigault, J., Budzinski, H. Selection Of An Appropriate Aqueous Nano-Fullerene (nC60) Preparation Protocol For Studying Its Environmental Fate And Behavior, Trends In Analytical Chemistry. 2016. 80: 1–11. https://doi.org/10.1016/j.trac.2016.02.019

Dukhin S. S.; Derjaguin B. V.; Semenikhin N. M. The interaction of two identical sphe­rical colloidal particles in large distances (in Russian). Doklady AN USSR. 1970. 192: 357–360.

Churaev N. V., Derjaguin B.V., Inclusion of structural forces in the theory of stability of colloids and films. Journal of Colloid and Interface Science. 1985. 103: 542–553. https://doi.org/10.1016/0021-9797(85)90129-8

Brant J. A., Labille J., Bottero J.-Y., Wiesner M. R. Characterizing the impact of preparation method on fullerene cluster structure and chemistry. Langmuir. 2006. 22: 3878−3885. https://doi.org/10.1021/la053293o

Ma X., Wiginton B., Bouchard D. Fullerene C60: Surface energy and interfacial interactions in aqueous systems. Langmuir. 2010. 26: 11886−11893. https://doi.org/10.1021/la101109h

Choi J. I., Snow S. D., Kim J.-H., Jang S. S., Interaction of C60 with water: first-principles modeling and environmental implications. Environ. Sci. Technol. 2015. 49: 1529−1536. https://doi.org/10.1021/es504614u

Li L., Bedrov D., Smith G. D., A molecular-dynamics simulation study of solvent-induced repulsion between C60 fullerenes in water. J. Chem. Phys. 2005. 123: No. 204504. https://doi.org/10.1063/1.2121647

Bedrov D., Smith G. D., Davande H., Li L. Passive transport of C60 fullerenes throuhj a lipid membrane: A molecula dynamics simulation study. J. Phys. Chem. B 2008. 112: 2078−2084. https://doi.org/10.1021/jp075149c


Download data is not yet available.