ELECTROCHEMISTRY OF IMMOBILIZED MICROPARTICLES AND MICRODROPLETE: ACCESS TO FUNDAMENTAL DATA OF SOLID MATERIALS AND IONS
№5

Keywords

Electrochemistry of solids, three-phase electrodes, ion transfer between immiscible solvents.

How to Cite

Scholz, F. (2021). ELECTROCHEMISTRY OF IMMOBILIZED MICROPARTICLES AND MICRODROPLETE: ACCESS TO FUNDAMENTAL DATA OF SOLID MATERIALS AND IONS. Ukrainian Chemistry Journal, 87(9), 55-60. https://doi.org/10.33609/2708-129X.87.09.2021.55-60

Abstract

The idea to study the electrochemistry of immobilized microparticles has been published by this author for the first time in 1989. In the last 32 years, this approach has been shown to be very successful not only for analytical characterization of solid materials, but also applicable to extract thermodynamic and kinetic data, and even to determine the age of metal specimen. In 2000, it has been shown that the electrochemistry of immobilized microdroplets gives an elegant access to determine the Gibbs free energies of ion transfer between immiscible solvents. These measurements are performed with a standard 3-electrode potentiostate and can be used also for solvents, which cannot be used in experiments with the classical 4-electrode technique.

The electrochemistry of microparticles and microdroplets share several common features with respect to the electrode mechanisms: in both cases three-phase electrodes are realized and ion and electron transfer proceed simultaneously.

This talk reviews the activities of the speaker and his cooperation partners during the last 3 decades paying special attention to those results, which are of general interest.

https://doi.org/10.33609/2708-129X.87.09.2021.55-60
№5

References

Scholz F. Glazunov’s electrography – the first electrochemical imaging and the first solid state electroanalysis. J Solid State Electrochem. 2021.

https://doi.org/10.1007/s10008-021-04967-1

Scholz F., Schröder U., Gulaboski R., Doménech-Carbó A. Electrochemistry of immobilized particles and droplets, 2-nd edition, Berlin: Springer. 2015. 327.

Scholz F., Nitschke L., Henrion G. A. New Procedure for Fast Electrochemical Analysis of Solid Materials. Naturwissenschaften. 1989. 76:71.

Scholz F., Nitschke L., Henrion G., Dama­schun A. A new technique to study the electrochemistry of minerals. Naturwissenschaften. 1989. 76: 167–168.

Lange B., Scholz F., Bautsch H-J., Dama­schun F., Wappler G. Thermodynamics of the xanthoconite-proustite and pyrostilpnite-pyrargyrite transitions as determined by abrasive stripping voltammetry. Phys. Chem. Minerals. 1993. 19: 486–491.

Meyer B., Scholz F. Redetermination of the transformation enthalpies of the xanthoconite-proustite, pyrostilpnite-pyrargyrite and trechmannite-smithite phase transition. Phys. Chem. Minerals. 1997. 24: 50–52.

Scholz F., Dostal A. The formal potentials of the solid metal hexacyanometalates. Angew. Chem. Int. Ed. Engl. 1995. 34: 2685–2687.

Bárcena Soto M., Scholz F. The thermodynamics of the insertion electrochemistry of solid metal hexacyanometallates. J. Electroanal. Chem. 2002. 521: 183–189.

Meyer B., Zhang S., Scholz F. The quantitative analysis of mixed crystals CuSxSe1-x with abrasive stripping voltammetry and a redetermination of the solubility product of CuSe and the standard potential of the Cu/CuSe electrode. Fresenius‘ J. Anal. Chem. 1996. 356: 267–270.

Reddy S-J., Dostal A., Scholz F. Solid state electrochemical studies of mixed nickel-­iron hexacyanoferrates with the help of abrasive stripping voltammetry. J. Electroanal. Chem. 1996. 403: 209–212.

Schwudke D., Stößer R., Scholz F. Solid-state electrochemical, X-ray and spectro-scopic characterization of substitutional solid solutions of iron-copper hexacyano-ferrates. Electrochem. Commun. 2000. 2: 301–306.

Widmann A., Kahlert H., Petrovic-Prele­vic I., Wulff H, Yakhmi J. V., Bagkar N., Scholz F. The structure, insertion electrochemistry and magnetic properties of a new type of substitutional solid solutions of copper, nickel and iron hexacyanoferrates/ hexacyanocobaltates. Inorg.Chem. 2002. 42: 5706–5715.

Lovrić M., Scholz F. A model for the propa­gation of a redox reaction through microcrystals. J. Solid State Electrochem. 1997. 1: 108–113.

Scholz F., Lovrić M., Stojek Z. The role of redox mixed phases {oxx(Cnred)1-x} in so­lid state electrochemical reactions and the effect of miscibility gaps in voltammetry. J. Solid State Electrochem. 1997. 1: 134–142.

Lovrić M., Scholz F. A model for the coup­led transport of ions and electrons in redox conductive microcrystals. J. Solid State Electrochem. 1999. 3: 172–175.

Lovrić M., Hermes M., Scholz F. Solid state electrochemical reactions in systems with miscibility gaps. J. Solid State Electrochem. 2000. 4: 394–401.

Schröder U., Oldham K. B., Myland J. C., Mahon P. J., Scholz F. Modelling of so­lid-state voltammetry of immobilized microcrystals assuming an initiation of the electrochemical reaction at a three-phase junction. J. Solid State Electrochem. 2000. 4: 314–324.

Meyer B., Ziemer B., Scholz F. In situ X-ray diffraction study of the electrochemical reduction of tetragonal lead oxide and orthorhombic Pb(OH)Cl mechanically immobilized on a graphite electrode. J. Electroanal. Chem. 1995. 392: 79–83.

Bárcena Soto M., Kubsch G., Scholz F. Cyc­lic voltammetry of immobilized microparticles with in situ calorimetry, Part I: The thermistor electrode. J. Electroanal. Chem. 2002. 528: 18–26.

Bárcena Soto M., Scholz F. Cyclic voltammetry of immobilized microparticles with in situ calorimetry, Part II: Application of a thermistor electrode for in situ calorimetric studies of the electrochemistry of solid me­tal hexacyanoferrates. J. Electroanal. Chem. 2002. 528: 27–32.

Schröder U., Scholz F. Microscopic in situ diffuse reflectance spectro electrochemistry of solid state electrochemical reactions of particles immobilized on electrodes. J. Solid State Electrochem. 1997. 1: 62–67.

Hasse U., Scholz F. In situ atomic force microscopy of the reduction of lead oxide nanocrystals immobilized on an electrode surface. Electrochem. Commun. 2001. 3: 429–434.

Hasse U., Nießen J., Scholz F. Atomic force microscopy of the electrochemical reductive dissolution of sub-micrometersized crystals of goethite immobilized on a gold electrode. J. Electroanal. Chem. 2003. 556: 13–22.

Hasse U., Wagner K., Scholz F. Nucleation at three-phase junction lines: In situ ato­mic force microscopy of the electrochemical reduction of sub-micrometer size silver and mercury (I) halide crystals immobilized on gold electrodes. J. Solid State Electrochem. 2004. 8: 842–853.

Hasse U., Scholz F. In situ AFM observation of the electrochemical reduction of a single silver sulphide crystal and the recrystallization of the resulting silver crystal. Electrochem.Commun. 2005. 7: 173–176.

Hasse U., Scholz F. Atomic force microscopic study of the chemical oxidation of silver crystals immobilized on platinum and on quartz. Electrochem. Commun. 2006. 8: 1005–1010.

Hasse U., Scholz F. In situ AFM evidence of the involvement of an oversaturated solution in the course of oxidation of silver nano­crystals to silver iodide crystals. Electrochem. Commun. 2004. 6: 409–412.

Cisternas R., Kahlert H., Wulff H., Scholz F. The electrode responses of a tungsten bronze electrode differ in potentiometry and voltammetry and give access to the individual contributions of electron and proton transfer. Electrochem. Commun. 2015. 56: 34–37.

Scholz F., Doménech-Carbó A. The thermodynamics of insertion electrochemical electrodes – a team play of electrons and ions across two separate interfaces (minireview). Angew. Chem. Int. Ed. 2019. 19: 3279–3284.

Doménech-Carbó A., Scholz F. Electrochemical age determinations of metallic specimens — utilization of the corrosion clock.Acc. Chem. Res. 2019. 52:400−406.

Scholz F., Komorsky-Lovrić Š., Lovrić M. A new access to Gibbs free energies of transfer of ions across liquid-liquid interfaces and a new method to study electrochemical processes at well-defined three-phase junctions. Electrochem. Commun. 2000. 2: 112–118.

Gulaboski R., Mirčeski V., Scholz F. An electrochemical method for the determination of the standard Gibbs energy of anion transfer between water and n-octanol. Electrochem. Commun. 2002. 4: 277–283.

Scholz F., Gulaboski R., Mirčeski V., Langer P. Quantification of the chiral recognition in electrochemically driven ion transfer across the interface water|chiral liquid. Electrochem. Commun. 2002. 4: 659–662.

Mirčeski V., Gulaboski R., Scholz F. Determination of the standard Gibbs energies of transfer of cations across the nitrobenzene/water interface utilizing the reduction of iodine in an immobilized nitrobenzene droplet. Electrochem. Commun. 2002. 4: 814–818.

Komorsky-Lovrić Š., Riedl K., Gulaboski R, Mirčeski V., Scholz F. Determination of standard Gibbs energies of transfer of organic anions across the water | nitrobenzene interface. Langmuir. 2002. 18: 8000–8005; Correction: 2003. 19: 3090.

Gulaboski R., Mirčeski V., Scholz F. Determination of the standard Gibbs energies of transfer of cations and anions of amino acids and small peptides across the water | nitrobenzene interface. Amino Acids. 2003. 24: 149–154.

Gulaboski R., Riedl K., Scholz F. Standard Gibbs energies of transfer of halogenate and pseudohalogenate ions, halogen substituted acetates, and cycloalkylcarboxylate anions at the water| nitrobenzene interface. Phys. Chem. Chem. Phys. 2003. 5: 1284–1289.

Gulaboski R., Scholz F. The lipophilicity of peptide anions – an experimental data set for lipophilicity calculations. J. Phys. Chem. B. 2003. 107: 5650–5657.

Bouchard G., Galland A., Carrupt P-A., Gulaboski R., Mirčeski V., Scholz F., Girault H. H. Standard partition coefficients of anionic drugs in the n octanol/water system determined by voltammetry at three-phase electrodes. Phys. Chem. Chem. Phys. 2003. 5:3748–3751.

Scholz F., Gulaboski R., Caban K. The determination of standard Gibbs energies of transfer of cations across the nitrobenzene | water interface with the help of a three-phase electrode. Electrochem. Commun. 2003. 5: 929–934.

Gulaboski R., Caban K., Stojek Z., Scholz F.The determination of the standard Gibbs energies of ion transfer between water and heavy water by using the three-phase electrode approach. Electrochem. Commun. 2004. 6: 215–218.

Scholz F., Gulaboski R. Gibbs energies of transfer of chiral anions across the interface water|chiral organic solvent determined with the help of three-phase electrodes. Fa­raday Discussions. 2005. 129: 169–177.

Scholz F., Gulaboski R. Determination of Gibbs energies of ion transfer across water/organic liquid interfaces with three-phase electrodes. Chem. Phys. Chem. 2005. 6: 16–28.

Downloads

Download data is not yet available.