NASICON, garnet, perovskite, phase transformations.

How to Cite

Lisovskyi, I., Barykin, M., Solopan, S., & Belous , A. (2021). FEATURES OF PHASE TRANSFORMATIONS IN THE SYNTHESIS OF COMPLEX LITHIUM-CONDUCTING OXIDE MATERIALS. Ukrainian Chemistry Journal, 87(9), 14-34. https://doi.org/10.33609/2708-129X.87.09.2021.14-34


Lithium-ion batteries (LIB`s) are widely used in consumer electronics, mobile phones, personal computers, as well as in hybrid and electric vehicles. Liquid electrolytes, which mainly consist of aprotic organic solvents and lithium-conductive salts, are used for the transfer of lithium ions in LIB`s. However, the application of liquid electrolytes in LIB`s leads to a number of problems, the most significant of which are the risk of battery ignition during operation due to the presence of flammable organic solvents and loss of capacity due to the interaction of liquid electrolyte with electrode materials during cycling. An alternative that can ensure the safety and reliability of lithium batteries is the development of completely so­lid state batteries (SSB`s). SSB`s are not only inherently safer due to the absence of flammable organic components, but also have the potential to increase significantly the energy density. Instead of a porous separator based on polypropylene saturated with a liquid electrolyte, the SSB`s use a solid electrolyte that acts as an electrical insulator and an ionic conductor at the same time. The use of a compact solid electrolyte, which acts as a physical barrier that prevents the growth of lithium dendrites, also allows using lithium metal as the anode material.

It is desirable to use oxide systems as the so­lid electrolytes for SSB`s, as they are resistant to moisture and atmospheric air. Among the lithi­um-conducting oxide materials, which exhibit relatively high lithium conductivity at a room temperature and can be used as a solid electrolyte in the completely solid-state batteries, lithium-air batteries and other electrochemical devices, the most promising materials are ones with NASICON, perovskite and garnet-type structures.

The phase transformations that occur during the synthesis of complex lithium-conductive oxides, namely Li1.3Al0.3Ti1.7(PO4)3 with the NASICON-type structure, Li0.34La0.56TiO3 with the perovskite-type structure and Li6.5La3Zr1.5Nb0.5O12 with the garnet-type structure by the solid-state reactions method in an air were investigated. The optimal conditions for the synthesis of each of the above-mentioned compounds were determined.



Wakayama H., Kawai Y. The effect of the LiCoO2/Li7La3Zr2O12 ratio on the structure and electrochemical properties of nanocomposite cathodes for all-solid-state lithium batteries. J. Mater. Chem. A. 2017. 5 (35): 18816–18822. https://doi.org/10.1039/C7TA05527G

Schnell J., Günther T., Knoche T., Vieider C., Köhler L., Just A., Keller M., Passerini S., Reinhart G. All-solid-state lithium-ion and lithium metal batteries–paving the way to large-scale production. J. Power Sources. 2018. 382: 160–175. https://doi.org/10.1016/j.jpowsour.2018. 02.062

Hess S., Wohlfahrt-Mehrens M., Wachtler M. Flammability of Li-ion battery electrolytes: flash point and self-extinguishing

time measurements. J. Electrochem. Soc. 2015. 162 (2): A3084. https://doi.org/10.1149/2.0121502jes

Hendricks C., Williard N., Mathew S., Pecht M. A failure modes, mechanisms, and effects analysis (FMMEA) of lithium-ion batteries. J. Power Sources. 2015. 297: 113–120. https://doi.org/10.1016/j.jpowsour.2015. 07.100

Knoche T., Zinth V., Schulz M., Schnell J., Gilles R., Reinhart G. In situ visualization of the electrolyte solvent filling process by neutron radiography. J. Power Sources. 2016. 331: 267–276. https://doi.org/10.1016/j.jpowsour.2016. 09.037

Wood III D. L., Li J., Daniel C. Prospects for reducing the processing cost of lithium ion batteries. J. Power Sources. 2015. 275: 234–242. https://doi.org/10.1016/j.jpowsour.2014. 11.019

Varzi A., Raccichini R., Passerini S., Scrosati B. Challenges and prospects of the role of solid electrolytes in the revitalization of lithium metal batteries. J. Mater. Chem. A. 2016. 4 (44): 17251–17259. https://doi.org/10.1039/C6TA07384K

Liang S., Yan W., Wu X., Zhang Y., Zhu Y., Wang H., Wu Y. Gel polymer electrolytes for lithium ion batteries: Fabrication, cha­racterization and performance. Solid State Ionics. 2018. 318: 2–18. https://doi.org/10.1016/j.ssi.2017.12.023

Aono H., Sugimoto E., Sadaoka Y., Ima­naka N., Adachi G. Ionic conductivity of solid electrolytes based on lithium titanium phosphate. J. Electrochem. Soc. 1990. 137 (4): 1023. https://doi.org/10.1149/1.2086597

Thangadurai V., Narayanan S., Pinzaru D. Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chem. Soc. Rev. 2014. 43 (13): 4714–4727. https://doi.org/10.1039/C4CS00020J

Seino Y., Ota T., Takada K., Hayashi A., Tatsumisago M. A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy Environ. Sci. 2014. 7 (2): 627–631. https://doi.org/10.1039/C3EE41655K

Fu K. K., Gong Y., Dai J., Gong A., Han X., Yao Y., Wang C., Wang Y., Chen Y., Yan C. Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries. Proc. Natl. Acad. Sci. 2016. 113 (26): 7094–7099. https://doi.org/10.1073/pnas.1600422113

Wang X., Zhang Y., Zhang X., Liu T., Lin Y.-H., Li L., Shen Y., Nan C.-W. Lithium-salt-rich PEO/Li0. 3La0. 557TiO3 interpenetrating composite electrolyte with three-dimensional ceramic nano-backbone for all-solid-state lithium-ion batteries. ACS Appl. Mater. Interfaces. 2018. 10 (29): 24791–24798. https://doi.org/10.1021/acsami.8b06658

Ngai K. S., Ramesh S., Ramesh K., Juan J. C. A review of polymer electrolytes: fundamental, approaches and applications. Ionics (Kiel). 2016. 22 (8): 1259–1279. https://doi.org/10.1007/s11581-016-1756-4

Zheng F., Kotobuki M., Song S., Lai M. O., Lu L. Review on solid electrolytes for all-solid-state lithium-ion batteries. J. Power Sources. 2018. 389: 198–213. https://doi.org/10.1016/j.jpowsour.2018. 04.022

Kerman K., Luntz A., Viswanathan V., Chiang Y.-M., Chen Z. practical challenges hindering the development of solid state Li ion batteries. J. Electrochem. Soc. 2017. 164 (7): A1731. https://doi.org/10.1149/2.1571707jes

Hameer S., Niekerk J. L. van. A review of large‐scale electrical energy storage. Int. J. energy Res. 2015. 39 (9): 1179–1195. https://doi.org/10.1002/er.3294

Cao C., Li Z.-B., Wang X.-L., Zhao X.-B., Han W.-Q. Recent advances in inorganic solid electrolytes for lithium batteries. Front. Energy Res. 2014. 2: 25. https://doi.org/10.3389/fenrg.2014.00025

Belous A. G., Gavrilova L. G., Polyanetskaya S. V, Makarova Z. Y., Chalyj V. P. Stabilization of lanthanum titanate perovskite structure. Ukr. Khimicheskij Zhurnal. 1984. 50 (5): 460–461 (In Russian). https://doi.org/10.3389/fenrg.2014.00025

Belous A. G., Butko V. I., Novitskaya G. N., Poplavko Y. M., Ushatkin E. F. Dielectric spectra of La2/3-xM3xTiO3 perovskites. Fiz. Tverd. Tela. 1985. 27 (7): 2013–2016 (In Russian).

Belous A. G., Butko V. I., Novitskaya G. N., Polyanetskaya S. V, Poplavko Y. M., Khomenko B. S. CONDUCTIVITY OF La2/3-xM3xTiO3 PEROVSKITES. Ukr. Fiz. Zhurnal. 1986. 31 (4): 576–580 (In Russian).

Bohnke O., Bohnke C., Fourquet J. L. Me­chanism of ionic conduction and electrochemical intercalation of lithium into the perovskite lanthanum lithium titanate. Solid State Ionics. 1996. 91 (1–2): 21–31. https://doi.org/10.1016/S0167-2738(96) 00434-1

Wenzel S., Leichtweiss T., Krüger D., Sann J., Janek J. Interphase formation on lithium solid electrolytes—An in situ approach to study interfacial reactions by photoelectron spectroscopy. Solid State Ionics. 2015. 278: 98–105. https://doi.org/10.1016/j.ssi.2015.06.001

Zeier W. G. Structural limitations for optimizing garnet-type solid electrolytes: a perspective. Dalt. Trans. 2014. 43 (43): 16133–16138. https://doi.org/10.1039/C4DT02162B

Xie H., Alonso J. A., Li Y., Fernández-Díaz M. T., Goodenough J. B. Lithium distribution in aluminum-free cubic Li7La3Zr2O12. Chem. Mater. 2011. 23 (16): 3587–3589. https://doi.org/10.1021/cm201671k

Logéat A., Köhler T., Eisele U., Stiaszny B., Harzer A., Tovar M., Senyshyn A., Ehrenberg H., Kozinsky B. From order to disorder: The structure of lithium-conducting garnets Li7− xLa3TaxZr2−xO12 (x= 0–2). Solid State Ionics. 2012. 206: 33–38. https://doi.org/10.1016/j.ssi.2011.10.023

Thompson T., Wolfenstine J., Allen J. L., Johannes M., Huq A., David I. N., Sakamoto J. Tetragonal vs. cubic phase stability in Al–free Ta doped Li7La3Zr2O12 (LLZO). J. Mater. Chem. A. 2014. 2 (33): 13431–13436. https://doi.org/10.1039/C4TA02099E

Murugan R., Thangadurai V., Weppner W. Fast lithium ion conduction in garnet‐type Li7La3Zr2O12. Angew. Chemie Int. Ed. 2007. 46 (41): 7778–7781. https://doi.org/10.1002/anie.200701144

Dhivya L., Murugan R. Effect of simultaneous substitution of Y and Ta on the stabilization of cubic phase, microstructure, and Li+ conductivity of Li7La3Zr2O12 lithi­um garnet. ACS Appl. Mater. Interfaces. 2014. 6 (20): 17606–17615. https://doi.org/10.1021/am503731h

Allen J. L., Wolfenstine J., Rangasamy E., Sakamoto J. Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12. J. Power Sources. 2012. 206: 315–319. https://doi.org/10.1016/j.jpowsour.2012. 01.131

Thangadurai V., Weppner W. Li6ALa2Nb2O12 (A= Ca, Sr, Ba): A New Class of Fast Lithi­um Ion Conductors with Garnet‐Like Structure. J. Am. Ceram. Soc. 2005. 88 (2): 411–418. https://doi.org/10.1111/j.1551-2916.2005. 00060.x

Li Y., Han J.-T., Wang C.-A., Xie H., Goodenough J. B. Optimizing Li+ conductivity in a garnet framework. J. Mater. Chem. 2012. 22 (30): 15357–15361. https://doi.org/10.1039/C2JM31413D

Kim Y., Yoo A., Schmidt R., Sharafi A., Lee H., Wolfenstine J., Sakamoto J. Electrochemical stability of Li6.5La3Zr1.5M0.5O12 (M= Nb or Ta) against metallic lithium. Front. Energy Res. 2016. 4: 20. https://doi.org/10.3389/fenrg.2016.00020

Kobayashi Y., Seki S., Tabuchi M., Miyashiro H., Mita Y., Iwahori T. High-performance genuine lithium polymer battery obtained by fine-ceramic-electrolyte coating of LiCoO2. J. Electrochem. Soc. 2005. 152 (10): A1985. https://doi.org/10.1149/1.2007207

Wang C., Hou Y., Ge H., Zhu M., Wang H., Yan H. Sol–gel synthesis and characterization of lead-free LNKN nanocrystalline powder. J. Cryst. Growth. 2008. 310 (22): 4635–4639. https://doi.org/10.1016/j.jcrysgro.2008. 08.042

Arakawa S., Nitta H., Hayashi S. Synthesis of lanthanum lithium tantalate powders and thin films by the sol–gel method. J. Cryst. Growth. 2001. 231 (1–2): 290–294. https://doi.org/10.1016/S0022-0248(01) 01434-8

Fertout R. I., Ghelamallah M., Kacimi S. Effect of strontium on structure and superficial area of La2O3. Adv. Mater. Phys. Chem. 2012. 2 (1): 31. http://dx.doi.org/10.4236/ampc.2012. 21005


Download data is not yet available.