phthalocyanines, zirconium, hafnium, synthesis, spectroscopy.

How to Cite

Chernii, V., Tretyakova, I., Tomachynska, L., Gerasymchuk, Y., Chernii, S., & Pekhnyo, V. (2021). OUT-OF-PLANE COORDINATED ZIRCONIUM(IV) AND HAFNIUM(IV) PHTHALOCYANINATES. Ukrainian Chemistry Journal, 87(8), 82-98. https://doi.org/10.33609/2708-129X.87.08.2021.82-98


The article is devoted to methods of synthesis, the structure, and spectral characteristics of zirconium and hafnium phthalocyaninates with out-of-plane coordinated ligands. The gene­ral scheme for the synthesis of out-of-plane coordinated Zr and Hf phthalocyanines includes obtaining initial dichloride or dihydroxo complexes, which then undergo substitution reactions with -dicarbonyl compounds, hydroxybenzoic, sulfo- and aliphatic carboxylic acids, etc. In the case of polyphenols, which are bidentate ligands, one ligand is coordinated to the central atom of the macrocycle. If -dicarbonyl compounds or carboxylic acids are introduced into the reaction, two ligands are coordinated. The reactivity of the out-of-plane coordinated ligands of Zr and Hf phthalocyanines was also investigated. In all obtained out-of-plane coordinated Zr and Hf phthalocyanines, the ligands are located in the cis position relative to the plane of the phthalocyanine macrocycle. X-ray diffraction, NMR, and UV-Vis spectroscopy have proved this arrangement of ligands. According to the X-ray diffraction data of Zr and Hf dibenzoylmethanato phthalocyanines, the metal atom is out of the plane of the phthalocyanine macrocycle, which itself is not planar. The central atoms are located almost in the middle between the N4 planes of the phthalocyanine macrocycle and the O4 of the extraplanar li­gands. The UV-Vis spectra of out-of-plane coordinated Zr and Hf phthalocyanines in organic solvents have a typical appearance for most metal phthalocyanines, characterized by a B-band of absorption in the region of 335–350 nm, a Q-band at 680-690 nm, and its satellite in the region of 615–620 nm. If the extraplanar ligand is a chromophore (e.g., curcumin or condensed derivatives of dehydroacetic acid), there are additional absorption bands in  UV-Vis spectra located between the B- and Q-bands. The influence of the nature of the central metal atoms, ligands and solvents on the fluorescent properties of the out-of-plane coordinated Zr and Hf phthalocyanines was also discussed.



Braun A. Über die Produkte der Einwirkung von Acetanhydrid auf Phthalamid. Chem.Ber. 1907. 40: 2709–2713. https://doi.org/10.1002/cber.190704002202

Venkataraman K. Chemistry of synthetic dyes. L. GNTIHL. 1957. T. 2: 1278 (In Russian).

Linstead R.P. Phthalocyanines. Part I. A new type of synthetic colouring matters. J. Chem. Soc. 1934. 9: 1016–1017. https://doi.org/10.1039/JR9340001016

Robertson J.M. An X-Ray study of the structure of the Phthalocyanines. Part I. The metal-free, nickel, copper and platinum compounds. J. Chem. Soc. 1935. 1: 615–621. https://doi.org/10.1039/JR9350000615

Bradbrook E.F., Linstead R.P. The preparation of the ten dicyanonaphthalenes and the related naphthalenedicarboxylic acids. J. Chem. Soc. 1936. 1739–1744. https://doi.org/10.1039/JR9360001739

Linstead R.P., Rowe G.A. Phthalocyanines and related compounds. Part XVII. Intermediates for the preparation of tetrabenzporphins: Acids derived from phthali­midine. J. Chem. Soc. 1940. 1070–1076. https://doi.org/10.1039/JR9400001070

Barrett, P.A., Linstead, R.P., Leavitt, J.J., Rowe, G.A. Phthalocyanines and related compounds. Part XVIII. Intermediates for the preparation of tetrabenzporphins: The thorpe reaction with phthalonitrile. J. Chem. Soc. 1940. 1076–1079. https://doi.org/10.1039/JR9400001076

Coe D.G., Gale M.M., Linstead R.P., Timmons C.J. The cis- and trans-αβ-dicyanostilbenes. Part I. The geometrical configuration and cyclisation of the trans-isomer, the previously alleged diphenylmaleidinitrile. J. Chem. Soc. 1957. 123–130. https://doi.org/10.1039/JR9570000123

Dent C.E., Linstead R.P. Phthalocyanines. Part IV. Copper phthalocyanines. J. Chem. Soc. 1934. 1027–1031. https://doi.org/10.1039/JR9340001027

Linstead, R.P., Lowe, A.R. Phthalocyanines. Part V. The molecular weight of magnesium phthalocyanine. J. Chem. Soc. 1934. 1031–1033. https://doi.org/10.1039/JR9340001031

Byrne G.T., Linstead R.P., Lowe A.R. Phthalocyanines. Part II. The preparation of phthalocyanine and some metallic derivatives from o-cyanobenzamide and phthalimide. J. Chem. Soc. 1934. 1017–1022. https://doi.org/10.1039/JR9340001017

Barrett P.A., Dent C.E., Linstead R.P. Phthalocyanines. Part VII. Phthalocyanine as a co-ordinating group. A general investigation of the metallic derivatives. J. Chem. Soc. 1936. 1719–1736. https://doi.org/10.1039/JR9360001719

Barrett P.A., Frye D.A., Linstead R.P. Phthalocyanines and associated compounds. Part XIV. Further investigations of metallic derivatives. J. Chem. Soc. 1938. 1157–1163. https://doi.org/10.1039/JR9380001157

Bradbrook E.F., Linstead R.P. Phthalocyanines. Part VIII. 1:2-Naphthalocyanines. J. Chem. Soc. 1936. 1744–1748. https://doi.org/10.1039/JR9360001744

Barrett P.A., Bradbrook E.F., Dent C.E., Linstead R.P. Phthalocyanines and rela­ted compounds. Part XVI. The halogenation of phthalocyanines. J. Chem. Soc. 1939. 1820–1828. https://doi.org/10.1039/JR9390001820

Bilton J.A., Linstead R.P. Phthalocyanines. Part X. Experiments in the pyrrole, isoоxazole, pyridazine, furan, and triazole series. J. Chem. Soc. 1937. 922–929. https://doi.org/10.1039/JR9370000922

Cook A.H., Linstead R.P. Phthalocyanines. Part XI. The preparation of octaphenylporphyrazines from diphenylmaleinitrile. J. Chem. Soc. 1937. 929–933.


Linstead R.P., Noble E.G. Phthalocyanines. Part XII. Experiments on the preparation of tetrabenzporphyrins. J. Chem. Soc. 1937. 933–936. https://doi.org/10.1039/JR9370000933

Linstead R.P., Noble E.G., Wright J.M. Phthalocyanines. Part IX. Derivatives of thiophen, thionaphthen, pyridine, pyrazine, and a note on the nomenclature. J. Chem. Soc. 1937. 911–921. https://doi.org/10.1039/JR9370000911

Barrett P.A., Linstead R.P., Tuey G.A.P., Robertson J.M. Phthalocyanines and related compounds. Part XV. Tetrabenztria­zaporphin: Its preparation from phthalonitrile and a proof of its structure. With a note on a preliminary X-ray investigation. J. Chem. Soc. 1939. 1809–1820. https://doi.org/10.1039/JR9390001809

Barrett P.A., Linstead R.P., Rundall F.G., Tuey G.A.P. Phthalocyanines and related compounds. Part XIX. Tetrabenzporphin, tetrabenzmonazaporphin and their metallic derivatives. J. Chem. Soc. 1940. 1079–1092. https://doi.org/10.1039/JR9400001079

Clark P.F., Elvidge J.A., Linstead R.P. Conjugated macrocycles. Part XXV. Cross-conjugated macrocycles with inner great rings of 16, 20, and 24 atoms. J. Chem. Soc. 1954. 2490–2497. https://doi.org/10.1039/JR9540002490

Elvidge J.A., Golden J.H., Linstead R.P. Conjugated macrocycles. Part XXIX. Tribenzotetrazaporphin metal derivatives and dibromotribenzotetrazaporphin. J. Chem. Soc. 1957. 2466–2472. https://doi.org/10.1039/JR9570002466

Kadish K.M., Smith K.M., Guilard R. Phthalocyanines: Properties and Materials. The Porphyrin Handbook. Amsterdam: Elsevier Science. 2003. 17: 289. https://doi.org/10.1016/C2009-0-22720-6

Berezin B.D. Coordination compounds of porphyrins and phthalocyanines. M: Science. 1978. 280 (In Russian).

Silver J., Frampton C. S., Fern G. R., Davies D.A., Miller J.R., Sosa-Sanchez J.L. Novel seven coordination geometry of Sn(IV): Crystal structures of phthalocyaninato bis(undecylcarboxylato)Sn(IV), its Si(IV) analogue, and phthalocyaninato Bis(chloro)silicon(IV). The electrochemistry of the Si(IV) analogue and related compounds. Inorg. Chem. 2001. 40(21): 5434–5439. https://doi.org/10.1021/ic001120a

Beltran H.I., Esquivel R., Sosa-Sanchez A., Sosa-Sánchez J.L., Höpfl H., Barba V., Farfán N., García M.G., Olivares-Xomet L.O., Zamudio-Rivera L.S. Microwave assisted stereoselective synthesis of cis-substituted TinIV phthalocyanine dicarboxylates. Application as corrosion inhibitors. Inorg. Chem. 2004. 43(12): 3555–3557. https://doi.org/10.1021/ic049634n

Chernii V.Ya. Synthesis, structure, properties and prospects of phthalocyanine complexes of titanium, zirconium and Hf with extraplanar ligands. Dis. Dr. Science. Kyiv. 2012. 330 (In Ukrainian).

Taube R. Über Titanphthalocyanine. Z. Chem. 1963. 3(5): 194.

Plyushchev V.E., SHklover L.P., Rozdin I.A. Sintez ftalocianinov cirkoniya i gafniya. ZH. neorg. him. 1964. 9(1): 125–127 (In Russian).

Pat. 38908 А, 7 С07D487/22, C07F19/00. Tomachynska L.A., Cherniy V.Ya., Volkov S.V. Method for synthesis of metallophthalocyanines from orthodinitriles and Lewis acids. – Publ. 15.05.2001, Bull. № 4 (In Ukrainian).

Tomachinskaya, L.A., Chernii, V.Ya., Volkov, S.V. Synthesis of dichloro phthalocyaninato complexes of titanium, zirconium, and hafnium. Zhurn. Neorgan. Khim. 2002. 47(2): 254−258 (In Russian).

Chernii V.Ya. Features of synthesis and 1H NMR spectroscopy of phthalocyanine complexes of zirconium and hafnium. Ukr. Bioorg. Acta. 2010. 8(2). 41–46 (In Ukrainian).

Goedken V.L., Dessy G., Ercolani C., Fa­res V. Synthesis, reactivity, and X-ray crystal structure of dichloro(phthalocyaninato)titanium (IV). Inorg. Chem. 1985. 24(7): 991–995. https://doi.org/10.1021/ic00201a006

Chernii V., Tretyakova I., Selin R., Fedosova N., Kovalska V. Synthesis and Reactivity of Zirconium and Hafnium Dihydroxophthalocyaninates. Rus. J. Inorg. Chem. 2020. 65(10): 1489–1493. https://doi.org/10.1134/S0036023620100046

Tomachynska L.A. Synthesis and spectro­scopy of chelato-phthalocyanine comp­lexes of titanium(IV), zirconium(IV) and hafnium(IV). Dis. Cand. Sciences. Kiev. 2002 (In Ukrainian).

Tretyakova I.N. Synthesis, fluorescent and electrochemical properties of phthalocyanine complexes of zinc, zirconium, hafnium. Dis. Cand. Sciences. Kiev. 2006 (In Russian).

Dovbii Ya.M. Synthesis, structure and properties of zirconium(IV) and hafnium(IV) with out-of-plane coordinated β-ketoenole chromophore ligands. Dis. Cand. Science. Kyiv. 2021 (In Ukrainian).

Tret’yakova I.N., Chernii V.Ya., Tomachinskaya L.A., Volkov S.V. Physicochemical properties of novel mixed-ligand complexes of zirconium and hafnium bis(4-benzoyl-3-methyl-1-phenyl-2-pyrazolin-5-onato)phthalocyaninates. Theor. Experim. Chem. 2006. 42(3): 175–180. https://doi.org/10.1007/s11237-006-0034-3

Tretyakova I.M., Tomachynska L.A., Kolotilova Yu.Yu., Cherniy V.Ya. Electroche­mical behavior of bis(3-substituted-2,4-pentanedionate)phthalocyanine complexes of Zr(IV) and Hf(IV) in non-aqueous media. Ukr. khim. zhurn. 2003. 69(3): 75–77 (In Ukrainian).

Chernii V.Ya., Tretyakova I.N., Dovbiy Ya.M., Volkov S.V. Synthesis of phthalocyanine complexes of d- and f-metals. Ukr. khim. zhurn. 2015. 81(11): 34–38 (In Russian).

Chernii V.Ya., Tretyakova I.N., Dovbiy Ya.M., Gorsky A.V. Zirconium and hafnium phthalocyanines with out-of-plane coordinated curcuminate ligands – synthesis and spectral properties. Ukr. khim. zhurn. 2017. 83(12): 69–75 (In Russian).

Cherniy V.Ya., Dovbiy Ya.M., Tretyakova I.N., Severinovskaya O.V., Volkov S.V. Synthesis and properties of phthalocyanine complexes of zirconium and hafnium with dehydroacetic acid. Ukr. khim. zhurn. 2015. 81(1): 3–7 (In Russian).

Dovbii Ya.M., Chernii V.Ya., Tretyakova I.M., Gorski A.V., Starukhin A.S., Volkov S.V. Synthesis of dehydroacetic acid derivatives with chromophoric chains and their complexes with zirconium phthalocyanine. Ukr. khim. zhurn. 2015. 81(12): 79–82.

Voloshin Y.Z., Varzatskii O.A., Korobko S.V., Chernii V.Y., Volkov S.V., Toma­chynski L.A., Pehn’o V.I., Antipin M.Yu., Starikova Z.A. Ditopic macropolycyclic complexes: Synthesis of hybrid phthalocya­ninoclathrochelates. Inorg. Chem. 2005. 44(4): 822–824. https://doi.org/10.1021/ic048189t

Chernii V.Ya., Bon V. V., Tretyakova I.N., Severinovskaya O.V., Volkov S.V. Novel zirconium(IV) and hafnium(IV) phthalocyanines with dibenzoylmethane as out-of-plane ligand: Synthesis, X-ray structure and fluorescent properties. Dyes Pigments. 2012. 94(2): 187–194. https://doi.org/10.1016/j.dyepig.2011.12.012

Sheka I.A., Karlysheva K.F. Chemistry of hafnium. Kiev: Naukova dumka. 1973. 456 (In Russian).

Tomachynski L.A., Chernii V.Ya., Volkov S.V. Synthesis and spectral characterization of bis(β-diketonato)zirconium(IV) and – hafnium(IV) phthalocyaninates. J. Porph. Phthalocyan. 2002. 6: 114–121. https://doi.org/10.1142/S1088424602000154

Tomachynski L.A., Tretyakova I.N., Chernii V.Ya., Volkov S.V., Kowalska M., Legend­ziewicz J., Gerasymchuk Y.S., Radzki St. Synthesis and spectral properties of Zr(IV) and Hf(IV) phthalocyanines with β-dike­tonates as axial ligands. Inorg. Chim. Acta. 2008. 361(9–10): 2569–2581. https://doi.org/10.1016/j.ica.2007.11.003

Tretyakova I.N., Chernii V.Ya., Tomachynski L.A., Volkov S.V. Synthesis and luminescent properties of new zirconium(IV) and hafnium(IV) phthalocyanines with various carbonic acids as out planed li­gands. Dyes Pigments. 2007. 75(1): 67–72. https://doi.org/10.1016/j.dyepig.2006.05.013

Guilard R., Dormond A., Belkalem M., Anderson J.E., Liu Y.H., Kadish K.M. First example of 1:1 actinide-phthalocyanine complexes: synthesis, electrochemical, and spectral characterization of bis(diketonato)thorium(IV) and uranium(IV) phthalocyaninates. Inorg. Chem. 1987. 26: 1410–1414. https://doi.org/10.1021/ic00256a016

Nevin W.A., Liu W., Lever A.B.P. Dime­risation of mononuclear and binuclear cobalt phthalocyanines. Can. J. Chem. 1987. 65: 855–858. https://doi.org/10.1139/v87-144

Tretyakova I.N., Cherniy V.Ya., Tomachinskaya L.A., Volkov S.V. Applied aspects of the chemistry of phthalocyanine metal complexes. Ukr. khim. zhurn. 2005. 71(11–12): 85–92 (In Russian).

Tomachinskaya LA, Chernii V.Ya., Kolotilova Yu.Yu. Redox properties of bis-(β-dicarbonyl) phthalocyanine complexes of zirconium(IV) and hafnium(IV). Ukr. khim. zhurn. 2002. 68(3): 64–65 (In Russian).

Tomachinskaya L.A., Kolotilova Y.Y., Cherni, V.Y., Volkov S.V. Electrochemical Behavior of Novel Bis(β-diketonate)phthalocyanine Complexes of Zr(IV) and Hf(IV). Theor. Experim. Chem. 2003. 39(2): 104–108. https://doi.org/10.1023/A:1024077725675

Ou Zh., Zhan R., Tomachynski L.A., Chernii V.Ya., Kadish K.M. Electrochemistry and spectroelectrochemistry of zirconium(IV) and hafnium(IV) phthalocyanines with β-diketone axial ligands in nonaqueous media. Macroheterocycles. 2011. 4(3): 164–170.

Kolbasov G.Ya., Krasnov Yu.S., Vorobets V.S., Cherniy V.Ya., Tomachynska L.A., Tretyakova I.M., Volkov S.V. Electrochromic, electrocatalytic and photoelectrochemical properties of mixed ligand phthalocyanine complexes of zirconium and hafnium. Nauk. Visnyk Chernivtsi Univer. 2008. 401: 71–73 (In Ukrainian).

Krasnov Yu.S., Kolbasov G.Ya., Tretyakova I.N., Tomachynska L.A., Chernii V.Ya., Volkov S.V. Dynamics of redox processes and electrochromism of films of zirconium(IV) phthalocyanines with out-of-plane β-dicarbonyl ligands. Solid State Ionics. 2009. 180: 928–933. https://doi.org/10.1016/j.ssi.2009.03.019

Tomachinskaya L.A., Gorbenko E.N., Filonenko V.V., Cherniy V.Ya., Volkov S.V. Cytotoxic antitumor activity of a new mixed ligand phthalocyanine complex of zirconium with lysine. Ukr. khim. zhurn. 2003. 69(3): 11–13 (In Russian).

Tomachynski L., Chernii V., Gorbenko H., Filonenko V., Volkov S. Synthesis, Spectral Properties, and Antitumor Activity of a New Axially Substituted Phthalocyanine Complex of Zirconium (IV) with Citric Acid. Chemistry&Biodiversity. 2004. 1: 862–867.


Gerasymchuk Y., Kałas W., Arkowski J., Marciniak Ł., Hreniak D., Wysokińska E., Strządała L., Obremska M., Tomachynski L., Chernii V., Stręk W. Gallato Zirconium(IV) Phtalocyanine Complex Conjugated with SiO2 Nanocarrier as a Photoactive Drug for Photodynamic Therapy of Atheromatic Plaque. Molecules. 2021. 26: 260. https://doi.org/10.3390/molecules26020260

Gerasymchuk Y., Lukowiak A., Wedzynska A., Kedziora A., Bugla-Ploskonska G., Piatek D., Bachanek T., Chernii V., Toma­chynski L., Strek W. New photosensitive nanometric graphite oxide composites as antimicrobial material with prolonged action. J. Inorg. Biochem. 2016. 159: 142–148. https://doi.org/10.1016/j.jinorgbio.2016. 02.019

Chernii S., Gerasymchuk Y., Losytskyy M., Szymański D., Tretyakova I., Łukowiak A., Pekhnyo V., Yarmoluk S., Chernii V., Kovalska V. Modification of insulin amyloid aggregation by Zr phthalocyanines functio­nalized with dehydroacetic acid derivatives. PLoS ONE. 2021. 16(1): e0243904. https://doi.org/10.1371/journal.pone. 0243904

Losytskyy M., Akbay N., Chernii S., Avcı E., Chernii V., Yarmoluk S., Culha M., Kovalska V. Characterization of the Interaction between Phthalocyanine and Amyloid Fibrils by Surface-Enhanced Raman Scattering (SERS). Analyt. Let. 2018. 51(1–2): 221–228. https://doi.org/10.1080/00032719.2017.1321655

Kovalska V., Chernii S., Cherepanov V., Losytskyy M., Chernii V., Varzatskii O., Naumovets A., Yarmoluk S. The impact of binding of macrocyclic metal complexes on amyloid fibrillization of insulin and lysozyme. J. Mol. Recognit. 2017. 30: e2622. https://doi.org/10.1002/jmr.2622

Kovalska V., Cherepanov V., Losytskyy M., Chernii S., Senenko A., Chernii V., Tre­tyakova I., Yarmoluk S., Volkov S. Anti-fibrillogenic properties of phthalocyanines: Effect of the out-of-plane ligands. Bioorg. Med. Chem. 2014. 22(240): 6918–6923. https://doi.org/10.1016/j.bmc.2014.10.024

Kovalska V.B., Losytskyy M.Yu., Chernii S.V., Chernii V.Ya., Tretyakova I.M., Yarmoluk S.M., Volkov S.V. Towards the anti-fibrillogenic activity of phthalocyanines with out-of-plane ligands: correlation with self-association proneness. Biopolym. Cell. 2013. 29(6): 473–479. http://dx.doi.org/10.7124/bc.00083C


Download data is not yet available.