lanthanides, complexes, luminescence properties, metalopolymer, gadolinium, dysprosium, β-diketones.

How to Cite

Berezhnytska О., Rohovtsov , O., Horbenko , A., Fedorov , Y., Trunova , O., Chyhyrynets , O., & Smola , S. (2021). THE COORDINATION COMPOUNDS Gd (III) AND Dy(III) WITH SOME β-DIKETONES. Ukrainian Chemistry Journal, 87(6), 97-120.


New complexes of Dy (III) and Gd (III) with b-diketones containing unsaturated and aryl substituents were synthesized. Metal polymers based on synthesized complexes were obtained by the method of radical polymerization. The composition and structure of synthesized complexes and metal polymers are established. It is shown that during polymerization the coordination environment of the central ion remains unchanged. The spectral-luminescent cha­racteristics of the synthesized compounds were studied. The presence of water molecules in the immediate coordination environment causes a low intensity of emission of monomeric dysprosium complexes. In the luminescence spectra of metal polymers, there are bands magnetic dipole transition (4F9 → 6H15/2) and electric dipole transition (4F9 → 6H13/2). The close energies of the triplet level of the ligand and the resonant level of the dysprosium ion cause low emission characteristics of the synthesized dysprosium complexes.


1. Santos P.R.S., Pereira D.K.S., Costa I.F., Silva I.F., Brito H.F., Faustino W.M., Carneiro Neto A.N., Moura Jr. R.T., Araújo M.H., Diniz R., Malta O.L., Teotonio E.E.S., Experimental and theoretical investigations of the [Ln(β-dik) (NO3)2(phen)2]⋅H2O luminescent complexes, Journal of Luminescence. 2020. doi:
2. Mikhalyova E.A., Zeller M., Jasinski J.P. at all Combination of single-molecule magnet behaviour and luminescence properties in a new series of lanthanide complexes with tris(pyrazolyl)borate and oligo(β-diketonate) ligands. Dalton Transactions. 2020. 49(23): 7774–7789.
3. Dascalu I.A, Mikhalyova E.A., Shova S., Lozan V., Roman G. at all. Synthesis, crystal structure and luminescent properties of isoreticular lanthanide–organic frameworks based on a tetramethyl-substituted terphenyldicarboxylic acid Polyhedron. 2021. 194: 114929.
4. Sukhikh T.S., Kolybalov D.S., Pylova E.K., Bashirov D.A., Komarov V.Y., Kuratieva N.V., Smolentsev A.I.,Fitch A.N., Konchenko S.N. A fresh look at the structural diversity of dibenzoylmethanide complexes of lanthanides. New J. Chem. 2019. 43: 9934–9942. doi: 10.1039/C9NJ02059D.
5. Abdallah. A., Freslon S., Fan X., Rojo A., Daiguebonne C., et al. Lanthanide-Based Coordination Polymers With 1,4-Carboxyphenylboronic Ligand: Multiemissive Compounds for Multisensitive Luminescent Thermometric Probes. Inorganic Chemistry, American Chemical Society. 2019. 58(1): 462–475. ff10.1021/acs.inorgchem.8b02681.
6. Zhang J., Li J., Feng X., Kong M., Hu Z.-B., Zheng Y.-X., Song Y. Light-controlled efficient photoluminescence based on an europium b-diketonate complex with single-crystal-to-single-crystal [2+2] cyclo­addition. Chem. Commun. 2019. 55: 12873–12876. doi: 10.1039/c9cc05227e.
7. Kumar K., Stefańczyk O., Chorazy S., K. Nakabayashi, B. Sieklucka, S. Ohkoshi Effect of Noble Metals on Luminescence and Single-Molecule Magnet Behavior in the Cyanido-Bridged Ln–Ag and Ln–Au (Ln = Dy, Yb, Er). Complexes Inorg. Chem. 2019. 58(9): 5677–5687.
8. Yao X., An G., Li Y., Yan P., Li W., Li G. Effect of nuclearity and symmetry on the single-molecule magnets behavior of se­ven-coordinated β-diketonate Dy(III) complexes. Journal of Solid State Chemistry. 274: 259–302.
9. Shi, Q.-H., Xue C.-L., Fan C.-J., Yan L.-L., Qiao N., Fang M., Wang S.-F., Мagnetic refrigeration property and slow magnetic relaxation behavior of five dinuclear Ln(III)-based compounds. Polyhedron. 2021. 194: 114938. 2020.114938.
10. Fondo M., Corredoira-Vázquez J., Herrera-Lanzós A., García-Deibe A.M., Sanmartín-Matalobos J., Manuel Herrera J., Colacio E., Nuñeza C. Improving the SMM and luminescence properties of lanthanide complexes with LnO9 cores in the presence of ZnII: an emissive Zn2Dy single ion magnet. Dalton Trans. 2017. 46: 17000–17009.
11. Pavlishchuk V.V. Influence of Structure on Magnetic and Photoluminescent Pro­perties of Coordination Compounds of 3d- and 4f-Metals and Nanocomposites Based on Them. Theoretical and Experimental Chemistry. 2017. 53(5): 296–304.
12. Eliseeva S.V., Bunzli J.C.G. Lanthanide luminescence for functional materials and bio-sciences. Chemical Society Reviews. 39(1): 189–227.
13. Fouad R., El-Shafiy H.F., Photoluminescence and cytotoxicity properties of new quinolinone lanthanide nano-complexes, Journal of Molecular Structure. 2019. 1190: 68–76. doi: https://
14. Sato T., Higuchi M. Efficient white-light-emission from a heterometallo-supramolecular polymer with Eu(III) and Zn(II) ions introduced alternately. Tetrahedron Letters. 60(13): 940–943.
15. Shia Q., Liub J., Wanga J., Yanga X., Zhan­ga X., Lia S., Suna P., Chena J., Lia B., Lüb X., Color-tunable white-light of binary tris-β-diketonate-(Dy3+, Gd3+ x) complexes’ blend under single wavelength excitation. Inorganic Chemistry Communications. 2020. 113: 107814.
16. Wang L.P., Du H.Y., Wang Y.X., Wang M., Tian Z.L., White-light-emitting single component metal-organic frameworks based on 2,3-pyridinedicarboxylic acid, Integr. Ferroelectr. 200 (2019): 199–227.
17. Wei C., Yao X., Sun B., Cai Z., Zhao Z., Chen M., Wei H., Liu Z., Bian Z., Huang C., Evaporable luminescent lanthanide com­plexes based on novel tridentate ligand. Journal of Rare Earths. 2021. 35(1): 7–14.
18. Nikolaeva A., Nygaard R., Martynova I., Tsymbarenko D. Synthesis, structure and thermal behavior of volatile mononuclear mixed ligand complexes of rare-earth dipivaloylmethanates with diethylenetriamine. Рolyhedron. 2020. 180: 114373,
19. Laura A. G., Wada, Lee S.C., Sobolev A.N., Hasegawa Yu., ,Eli Z.-C., Massi O. M., at all. Photophysical investigation of near infrared emitting lanthanoid complexes incorporating tris(2-naphthoyl)methane as a new antenna ligand. Dalton Transactions. 2019. 48: 3768–3776. 10.1039/C8DT04749A.
20. Meshkova S. B., The Dependence of the Luminescence Intensity of Lanthanide Complexes with β-Diketones on the Ligand Form, J. of Fluorescence. 2000. 10: 333–337.
21. Gontcharenko V. E., Kiskin M.A., Dol­zhenko V. D., Korshunov V.M., Tayda­kov I.V., Belousov Y.A. Mono- and Mixed Metal Complexes of Eu3+, Gd3+, and Tb3+ with a Diketone, Bearing Pyrazole Moiety and CHF2-Group: Structure, Color Tuning, and Kinetics of Energy Transfer between Lanthanide Ions. Molecules. 2021. 26: 2655–2669.
22. Pan M., Du B.B., Zhu Y.X., Yue M.Q., Wei Z.W., Su C.Y., Highly efficient visible-toNIR luminescence of lanthanide(III) complexes with zwitterionic ligands bearing charge-transfer character: beyond triplet sensitization. Chem. Eur. J. 2016. 22: 2440–2451.
23. Olyshevets I., Kariaka N., Znovjyak K., Gerasimchuk N., Lindeman S., Smola S., Seredyuk M., Sliva T., Amirkhanov V., Synthesis and Characterization of Ani­onic Lanthanide(III) Complexes with a Bidentate Sulfonylamidophosphate (SAPh) Ligand, Inorg. Chem. 2020. 59(1): 76–85.
24. Litsis O., Ovchynnikov V., Sliva T., Amir­khanov V., Sorokin V., Minyailo M., Ko­lomzarov Yu., Tytarenko P., Minakova I., Europium coordination compounds based on carbacylamidophosphate ligands for metal-organic light-emitting diodes (MOLEDs), Semicond. Phys. Quantum Electron. Optoelectron. 2013. 16(2): 210−215.
25. Savchenko I.O., Berezhnytska О.S., Fedorov Ya., New polymer metal сomplexes based β-diketones and lanthanides for OLEDs In book: Chem. Engineering of Pol. Product. of Func. and Flexible Mater., Apple Academic Press.19. 2017. 40-51
26. Berezhnytska O., Savchenko I., Denysova Z., Rusakova, N., Fedorov, Ya., Veli­gura, L., Rogovtsov, O.,Trunova, E. The new nanosized system on the basis Eu(ІІІ) complexes as precursors for organic electroluminescence diodes. Molecular Crystals and Liquid Crystals. 2014. 590: 58–65.
27. Igoa F., Peinado G., Suescun L., Kremer C., Torres J., Design of a white-light material based on a mixed-lanthanide metal organic framework, J. Solid State Chem. 279 (2019): 120925.
28. Li J.J., Fan T.T., Qu X.L., Han H.L., Li X., Temperature-induced 1D lanthanide polymeric frameworks based Lnn (n = 2, 2, 2, 6) cores: synthesis, crystal structures and luminescent properties. Dalton Trans. 2016. 45: 2924–2935.
29. Fan L.M., Fan W.L., Li B., Zhao X., Zhang X.T., W-shaped 1,3-di(2,4-dicarboxyphenyl)benzenebased lanthanide coordination polymers with tunable white light emission, New J. Chem. 2016. 40: 10440–10446.
30. Dang S., Zhang J.H., Sun Z.M., Tunable emission based on lanthanide(III) metalorganic frameworks: an alternative approach to white light. 2012. J. Mater. Chem. 22: 8868–8873.
31. Tweedle M.F. Physicochemical properties of gadoteridol and other magnetic resonance contrast agents. Invest Radiol. 1992. 27: 2–6.
32. Runge V.M. A comparison of two MR hepatobiliary gadolinium chelates, Gd-BOPTA and Gd-EOB-DTPA. Journal of Computer Assisted Tomography. 1998. 22: 643–650.
33. Tweedle M.F. The ProHance story: the making of a novel MRI contrast agent. European Radiology. 1997. 7: 225–230.
34. Raymond K.N, Pierre V.C. Next gene­ration, high relaxivity gadolinium MRI agents. Bioconjug Chem. 2005. 16: 3–8.
35. Runge V.M, Dickey K.M, Williams N.M, Peng X. Local tissue toxicity in response to extravascular extravasation of magne­tic resonance contrast media. Invest Radiol. 2002. 37: 393–398.
36. Xu, Q. Gadolinium(III) chelated conjugated polymer as a potential MRI contrast agent / Q. Xu, L. Zhu, M. Yu, F. Feng, L. An, C. Xing, S. Wang Polymer. 2010. 51(6): 1336–1340.
37. Liu, Y. Gadolinium-loaded polymeric nanoparticles modified with Anti-VEGF as multifunctional MRI contrast agents for the diagnosis of liver cancer / Y. Liu, Z. Chen, C. Liu, D. Yu, Z. Lu, N. Zhang Biomaterials. 2011. 32(22): 5167–5176.
38. Savchenko I., Berezhnytska O.S., Fedo­rov Ya, Smola S., Trunova O. Luminescent properties of new polymer metal complexes based β-diketones and REE. Molecular Crystals and Liquid Crystals. 2018. 673(1): 48–60.
39. Berezhnytska O.S., Savchenko I.O., Iva­kha N.B., Trunova O.K., Smola S.S., Zhe­leznova L.I. Near infrared electroluminescence polymeric systems containing β-diketones and lanthanides as emitters for organic light – emitting diodes. Molecular Crystals and Liquid Crystals, 2018. 670(1): 48–60.
40. Fedorov Ya.V., Berezhnytska O.S., Trunova O. K., Melnyk O.V., Synthes and study of europium complexes and metalopolymers based on. Ukr. Khim. Journal. 2013. 79(3): 25–31.
41. Mishchenko A.M., Trunova O.K., Semi-­empirical calculation of the structure of tautomeric forms of aliphatic β-ketoesters. Ukr. Khim. J. 81(10): 73–80.
42. Mishchenko A.M., Trunova, E.K., Berezhnytska A.S., Lanthanide complexes with allyl acetoacetate in mixed water-organic media: Formation, stability and bonding. Journal of Solution Chemistry. 2015. 44(11): 2117–2128.
43. Movchan, T.I., Solovyov, T.I., Petrova, L.A., Voloshanovsky, I.S., Belov, G.P., Pomoghailo A.D. Izv. AN, Sеr. Chem. 1994. 1: 43–47.
44. I. Savchenko, A. Berezhnytska, E. Trunova, N. Rusakova, Ya. Fedorov, G. Grozduyk Poly complexes based unsaturated β-diketones and rare earth elements for optoelectronics. Molec. Crys. Liqud. 2016. 640.
45. Nakamoto K., Infrared spectroscopy of inorganic and coordination compounds. Mir. Мoscow. 1991.
46. Nekhoroshkov V.P., Kamalov G.L., Zheltvay I.I., Ososkov A.K., Berestetskaya E.D., On the interaction between the IR spectral properties of 3d-transition metal β-dike­tonates and their structure. Russ. J.Coord. Chim. 1984. 10(4): 459–465.
47. Nakamoto K., McCarthy P. J., Martell A. E., Infrared Spectra of Metal Chelate Compounds. III. Infrared Spectra of Acetylace­tonates of Divalent Metals. J. Am. Chem. Soc. 1961. 83(6): 1272–1276.


Download data is not yet available.