MODERN RESEARCH METHODS OF PHYSICOCHEMICAL AND ELECTROCHEMICAL PROPERTIES OF ELECTROLYTES FOR Li-ION BATTERIES AND HYBRID SUPERCAPACITIES
№3

Keywords

electrolyte, non-aqueous solvent, operating life, impedance, voltammetry, viscosity, conductivity.

How to Cite

Diamant, V. (2021). MODERN RESEARCH METHODS OF PHYSICOCHEMICAL AND ELECTROCHEMICAL PROPERTIES OF ELECTROLYTES FOR Li-ION BATTERIES AND HYBRID SUPERCAPACITIES. Ukrainian Chemistry Journal, 87(6), 82-96. https://doi.org/10.33609/2708-129X.87.06.2021.82-96

Abstract

In review examineі base properties of modern non-aqueous electrolytes for li-ion batteries and hybrid supercapacities taking part in the formation of power density, electrochemical and thermal stability. Discussed such aspects as the electrolytes functions in electrochemical power sources, physicochemical and electrochemical properties of electrolytes for supercapacitors, the physicochemical and electrochemical properties of electrolytes for primary and secondary batteries, and methods of electrolytes research. As the base methodі for electrolytes studies considered: electrochemical impedance spectroscopy, voltammetry, amperometry, viscosimetry, and combined Ramman spectroscopy.

 

https://doi.org/10.33609/2708-129X.87.06.2021.82-96
№3

References

1. Millero F. J. Molal volumes of electrolytes. Chemical Reviews. 1971. 71(2): 147–176.
2. Laliberte M., Cooper W. E. Model for calculating the density of aqueous electrolyte solutions. Journal of Chemical & Engineering Data. 2004. 49(5): 1141–1151.
3. Li M., Wang C., Chen Z., Xu K., Lu J. New concepts in electrolytes. Chemical reviews. 2020. 120(14): 6783–6819.
4. Lukatskaya M. R., Feldblyum J. I., Mackanic D. G., Lissel F., Michels D. L., Cui Y., Bao Z. Concentrated mixed cation acetate “water-in-salt” solutions as green and low-cost high voltage electrolytes for aqueous batteries. Energy & Environmental Science. 2018. 11(10): 2876–2883.
5. Dalmazzone D., Clausse D., Dalmazzone C., Herzhaft B. The stability of methane hydrates in highly concentrated electrolyte solutions by differential scanning calori­metry and theoretical computation. American Mineralogist. 2004. 89(8–9): 1183–1191.
6. Pehlivan İ. B., Marsal R., Niklasson G. A., Granqvist C. G., Georén P. PEI–LiTFSI electrolytes for electrochromic devices: Characterization by differential scanning calorimetry and viscosity measurements. Solar energy materials and solar cells. 2010. 94(12): 2399–2404.
7. Zhang Z., Fouchard D., Rea J. R. Differential scanning calorimetry material studies: implications for the safety of lithium-ion cells. Journal of power sources. 1998. 70(1): 16–20.
8. Sundaramahalingam K., Muthuvinaya­gam M., Nallamuthu N., Vanitha D., Vahini M. Investigations on lithium ace­tate-doped PVA/PVP solid polymer blend electrolytes. Polymer Bulletin. 2019. 76(11): 5577–5602.
9. Nakajima H., Ohno H. Preparation of ther­mally stable polymer electrolytes from imidazolium-type ionic liquid derivatives. Polymer. 2005. 46(25): 11499–11504.
10. Wilken S., Johansson P., Jacobsson P. Infrared spectroscopy of instantaneous decomposition products of LiPF6-based lithium battery electrolytes. Solid State Ionics. 2012. 225: 608–610.
11. Enotiadis A., Fernandes N. J., Becerra N. A., Zammarano M., Giannelis E. P. Nanocomposite electrolytes for lithium batteries with reduced flammability. Electrochimica Acta. 2018. 269: 76–82.
12. Bešter-Rogač, M., & Habe, D. Modern advances in electrical conductivity measurements of solutions. Acta chimica slovenica. 2006. 53(3).
13. Chintapalli M., Timachova K., Olson K. R., Mecham S. J., Devaux D., DeSimone J. M., Balsara N. P. Relationship between conductivity, ion diffusion, and transference number in perfluoropolyether electrolytes. Macromolecules. 2016. 49(9): 3508–3515.
14. Valøen L. O., Reimers J. N. Transport properties of LiPF6-based Li-ion battery electrolytes. Journal of The Electrochemical Society. 2005.152(5): A882.
15. Muchakayala R., Song S., Wang J., Fan Y., Bengeppagari M., Chen J., Tan M. Deve­lopment and supercapacitor application of ionic liquid-incorporated gel polymer electrolyte films. Journal of industrial and engineering chemistry. 2018. 59: 79–89.
16. Li W., Zhang F., Xiang X., Zhang X. 2017. High-efficiency Na-storage performance of a nickel-based ferricyanide cathode in high-concentration electrolytes for aqueous sodium-ion batteries. ElectroChem. 4(11): 2870–2876.
17. Impedance Spectroscopy. Theory, Experiment and Applications. /Ed. E. Barsoukov, J. Ross Macdonald. N.Y., Wiley. 2005. 616.
18. Riabokin O. L., Boichuk A. V., Pershina K. D. Control of the State of Primary Alkaline Zn–MnO2 Cells Using the Electrochemical Impedance Spectroscopy Method. Surface Engineering and Applied Electrochemistry. 2018. 54(6): 614–622.
19. Jean-Baptiste Jorcin, Mark E. Orazem, Nadine Pébère and Bernard Tribollet. CPE analysis by local electrochemical impe­dance spectroscopy. Electrochimica Acta. 2006. 51(8–9): 1473–1479.
20. Pershina E.D., Burda V.E., Kazdobin K.A. et al. Identification of the sugars content in the production of champagne by the electrochemical impedance spectroscopy method. Surf. Engin. Appl.Electrochem. 2013. 49: 348–354.
21. Etacheri, V., Marom, R., Elazari, R., Salitra, G., & Aurbach, D. Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science. 2011. 4(9): 3243–3262.
22. Zhong, C., Deng, Y., Hu, W., Qiao, J., Zhang, L., & Zhang, J. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chemical Society Reviews. 2015. 44(21): 7484–7539.
23. Gao, H., & Lian, K. Proton-conducting polymer electrolytes and their applications in solid supercapacitors: a review. RSC advances. 2014. 4(62): 33091–33113.
24. Sharma, K., Arora, A., & Tripathi, S. K. Review of supercapacitors: Materials and devices. Journal of Energy Storage. 2019. 21: 801–825.
25. Kieran M., Dunens O., Harris A. A review of carbon nanotube purification by microwave assisted acid digestion. Separation and purification Technology. 2009. 66(2): 209–222.
26. Waldvogel S., Malkowsky I., Griesbach U., Pötter H. Novel fluorine-free electrolyte system for supercapacitors. Electroche­mistry Communications. 2009. 11(6): 1237–1241.
27. Nanbu N., Ebina T., Uno H., Ishizawa S. Physical and electrochemical properties of quaternary ammonium bis(oxalato)borates and their application to electric
double-layer capacitors. Electrochimica Acta. 2006. 52(4): 1763–1770.
28. Diamant V.A., Pershina E.D., Trachevsky V.V. et al. Physicochemical properties of tetramethylammonium bis(salicylo)borate. Russ J Appl Chem. 2015. 88: 901–907.
29. Diamant V. A., Malovanyy S. M., Pershina K. D., Kazdobin K. A. Electrochemical properties of Sodium bis [salicylato (2-)]-borate-γ-butyrolactone Electrolytes in Sodium Battery. Materials Today: Proceedings. 2019. 6: 86–94.
30. Kirchner B. Ionic Liquids Volume Editor. Heidelberg: Springer. 2009: 354.
31. House L., Hill J. Ionic Liquids Physicochemical Properties. Amsterdam: Elsevier. 2009. 478.
32. Gilliam R.J., Graydon J.W., Kirk D.W., Thorpe S.J. A review of specific conducti­vities of potassium hydroxide solutions for various concentrations and temperatures. Int. J. Hydrogen Energy. 2007. 32(3): 359–364.
33. Xu K. Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chemical Reviews. 2004. 104(10): 4303–4417.
34. Nikolsky B.P. Handbook of the chemist. Leningrad: Chemistry. 1971. 1169 p. [in Russian].
35. Dudley J., Wilkinson D., Thomas G., LeVae R. Conductivity of electrolites for rehargeble lithium batteris. Journal of Poweer Sources. 1991. 35(1): 59–82.
36. Yang H., Zhuang G., Ross P. Thermal Stability of LiPF6 Salt and Li-ion Battery Electrolytes Containing LiPF6. Journal of Power Sources. 2006. 161(1): 573–79.
37. Webber A. Conductivity and Viscosity of Solutions of LiCF3SO3, Li(CF3SO2)2N, and Their Mixtures. Journal of The Electrochemical Society. 1991. 138(9): 2586–2590.
38. Schaltkwijk W. Advances in Lithium-ion Batheries. New York: Kluwer Academic. 2002. 507 .
39. Dominey L., Koch V., Blakley T. Thermally stable lithium salts for polymer electrolytes. Electrochimical Acta. 1992. 37(9): 1551–1554.
40. Diamant V. A., Trachevskii V. V., Pershina K. D., Ogenko V. M., Donchu Chen, Huawen Hu, Min Chen, Xiaowen Wang, Menglei Chang. Specialties of the structure and conductivity of the non-aqueous electrolytes based on alkali metal bis(salicyl) borates and bis (oxalato) borates. Ukr. Chem. Journal. 2019. 85(3): 47–57.
41. Diamant V. A., Pershina K. D., Trachevskii V. V., Kazdobin K. A. Synthesis of Alkali Metal Bis(salicilato)borates by Microwave Method. Surface Engineering & Applied Electrochemistry. 2016. 52(2): 212–216.
42. Borup R., Meyers J., Pivovar B., Kim Y. S., Mukundan R., Garland N., Zelenay P. Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chemical reviews. 2007. 107(10): 3904–3951.
43. Ivanov-Shits A. K., Demyanets L. N. Materials of the Ionic of a Solid. Priroda. 2003. 12: 35–43.
44. Gromadsky D.G. High-capacity super-capacitors based on porous carbon materials with optimized electrode constituents. PhD thesis: Kyiv. 2012. 166 p. [in Ukrainian].
45. Sun X., Angell C. A. Doped sulfone electrolytes for high voltage Li-ion cell applications. Electrochemistry Communications. 2009. 11(7): 1418–1421.
46. Świętosławski M., Molenda M., Grabowska M., Wach A., Kuśtrowski P., & Dziembaj R. Electrochemical impedance spectroscopy study of C/Li2MnSiO4 compo­site cathode material at different states of charge. Solid State Ionics. 2014. 263: 99–102.
47. Péter, L. A systematic approach to the impedance of surface layers with mixed conductivity forming on electrodes. Journal of Solid State Electrochemistry. 2013. 17(12): 3075–3081.
48. Zhang L., Huang J., Youssef K., Redfern P. C., Curtiss L. A., Amine K., Zhang Z. Molecular engineering toward stabilized interface: an electrolyte additive for high-performance Li-ion battery. Journal of The Electrochemical Society. 2014. 161(14): A2262–A2267.
49. Kazdobin K. A., Pershina K. D., Kokhanenko V. V., Maslyuk L. N., Zapol’skii A. K. Nature of the conductivity of kaolin under hydration and mechanochemical activation. Surface Engineering and Applied Electrochemistry. 2014. 50(1): 95–100.
50. Cecchetto L., Salomon M., Scrosati B., Croce F. Study of a Li–air battery having an electrolyte solution formed by a mixture of an ether-based aprotic solvent and an ionic liquid. Journal of Power Sources. 2012. 213: 233–238.
51. Ran L., Liu X., Tang Q., Zhu K., Tian J., Du J., Shan Z. Grinding aid-assisted preparation of high-performance carbon-LiMnPO4. Electrochimica Acta. 2013. 114: 14–20.
52. Pershina, E.D., Kokhanenko, V.V., Mas­lyuk, L.N. et al. Conductivity of aqueous suspensions of alumosilicates. Surf. Engin. Appl.Electroche. 2011. 47:441–445.
53. Wu Q., Ha S., Prakash J., Dees D. W., Lu W. Investigations on high energy lithium-ion batteries with aqueous binder. Electrochimica Acta. 2013. 114: 1–6.
54. Seh Z. W., Sun J., Sun Y., Cui Y. A highly reversible room-temperature sodium me­tal anode. ACS central science. 2015. 1(8): 449–455.
55. Manivel A., Velayutham D., Noel M. Electrochemical behaviour of tetra-n-butylammonium nonaflate as an ionic liquid and as a supporting electrolyte in aprotic solvents: A comparative study. Journal of electroanalytical chemistry. 2011. 655(1): 79–86.
56. Bisquert J., Randriamahazaka H., Garcia-Belmonte G. Inductive behaviour by charge-transfer and relaxation in solid-state electrochemistry. Electrochimica Acta. 2005. 51(4): 627–640.
57. Hiller M. M., Joost M., Gores H. J., Passe­rini S., Wiemhöfer H. D. The influence of interface polarization on the determination of lithium transference numbers of salt in polyethylene oxide electrolytes. Electrochimica Acta. 2013. 114: 21–29.
58. S.B. Aziz, T.J. Woo, M.F.Z. Kadir, H.M. Ah­med A conceptual review on polymer electrolytes and ion transport models. Journal of Science: Advanced Materials and Devi­ces. 2018. 3(1):1–17.
59. K. D. Pershina, K. O. Kazdobin. Іmpe­dance spectroscopy of electrolytic materials. Kyiv: Osvita Ukraine. 2012. 223 p. [In Ukrainian].
60. Shih, Hong, and Tai-Chin Lo. Electrochemical impedance spectroscopy for battery research and development. Cortech Corporation. CA, Tech. Rep. 1996. 31. 9–11.
61. Bisquert J., Compte A. Theory of the electrochemical impedance of anomalous diffusion. Journal of Electroanalytical Chemistry. 2001. 499(1): 112–120.
62. Schweiger H.-G. Entwicklung und Erprobung neuer Messgeräte und Methoden für die rationelle Optimierung von neuen Elektrolyten für Lithium-Ionen-Batterien. PhD thesis: Regensburg. 2006.
63. Etacheri V., Marom R., Elazari R., Salitra G., Aurbach D. Challenges in the deve­lopment of advanced Li-ion batteries: a review. Energy & Environmental Science. 2011. 4(9): 3243–3262.
64. Kaymaksiz S., Wilhelm F., Wachtler M., Wohlfahrt-Mehrens M., Hartnig C., Tscher­nych I., Wietelmann U. Electrochemical stability of lithium salicylato-borates as electrolyte additives in Li-ion batteries. Journal of Power Sources. 2013. 239: 659–669.
65. Bhattacharyya, A. J., & Maier, J. Second Phase Effects on the Conductivity of Non-Aqueous Salt Solutions:“Soggy Sand Electrolytes”. Advanced Materials. 2004. 16(9–10): 811–814.
66. Monti D., Jónsson E., Palacín M. R., Johansson P. Ionic liquid based electrolytes for sodium-ion batteries: Na+ solvation and ionic conductivity. Journal of Power Sources. 2014. 245: 630–636.
67. Ponrouch A., Monti D., Boschin A., Steen B., Johansson P., Palacin M. R. Non-­aqueous electrolytes for sodium-ion bat­teries. Journal of Materials Chemistry A. 2015. 3(1): 22.

Downloads

Download data is not yet available.