CONTINUUM ELECTROSTATICS INVESTIGATION OF IONIC MICELLES USING ATOMISTIC MODELS
№1

Keywords

surfactant micelle, Stern layer, electrostatic potential, Poisson – Boltzmann equation, solvent-accessible surface.

How to Cite

Farafonov, V., Lebed, A., & Mchedlov-Petrossyan, N. (2021). CONTINUUM ELECTROSTATICS INVESTIGATION OF IONIC MICELLES USING ATOMISTIC MODELS. Ukrainian Chemistry Journal, 87(6), 55-69. https://doi.org/10.33609/2708-129X.87.06.2021.55-69

Abstract

The key parameter related to the structure of the electric double layer of ionic surfactant micelles – electrostatic potential – is considered. A brief overview of experimental methods and theoretical models for estimating electrostatic potential- is given. The calculating method for the electrostatic potential based on a numerical solution of the Poisson-Boltzmann equation using an atomistic model of anionic surfactant micelle - is proposed. The parameters necessary for the construction of atomistic models - are obtained from molecular dynamic modeling.  The electrostatic potentials for the micelles of sodium dodecyl sulfate and cetyltrimethylammonium bromide at different ionic strengths - were calculated by this method. The results are discussed in comparison with the values calculated in the simplified model, the Ohshima – Healy – White equation.

https://doi.org/10.33609/2708-129X.87.06.2021.55-69
№1

References

1. Surfactants science and technology. Retro­spects and Prospects. Ed. Romsted L. S. Boca Raton: CRC Press. 2014.
2. Handbook of Surface and Colloid Chemistry. Ed. Birdi K. S. Boca Raton: CRC Press, 2009.
3. Mchedlov-Petrossyan N. O., Vodolazkaya N. A., Kamneva N. N. Acid-base equilibrium in aqueous micellar solutions of surfactants. In: Micelles: Structural Biochemistry, Formation and Functions & Usage. Ed. Bradburn D., Bittinger J. N. Y.: Nova Publishers. 2013. Chapter 1. 1–71.
4. Rusanov A. I. Micellization in Surfactant Solutions. Reading: Harwood Academic Publishes. 1997.
5. Rusanov A. I. Nanothermodynamics: chemical approach. Russian Chemistry Journal. 2006. 50 (2): 145–151 [in Russian].
6. Shinoda K. The significance and characteristics of organized solutions. Journal of Physical Chemistry. 1985. 89 (11): 2429–2431. https://doi.org/10.1021/j100257a055.
7. Organized Solutions. Surfactants in Science and Technology. Ed. Friberg S. E., Lindman B. N.Y.: Marcel Dekker. 1992.
8. Stigter D. On the Adsorption of Counterions at the Surface of Detergent Micelles. Journal of Physical Chemistry. 1964. 68 (13): 3603–3611. https://doi.org/10.1021/j100794a028.
9. Stigter D. Micelle formation by ionic surfactants. III Model of Stern layer, ion distribution, and potential fluctuation. Journal of Physical Chemistry. 1975. 79 (10): 1008–1013. https://doi.org/10.1021/j100577a013.
10. Rathman J. F., Scamehorn J. F. Counterion binding on mixed micelles. Journal of Physical Chemistry. 1984. 88 (24): 5807–5816. https://doi.org/10.1021/j150668a014.
11. Gilányi T. Fluctuating micelles: a theory of surfactant aggregation 2. Ionic surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 1995. 104 (1): 119–126. https://doi.org/10.1016/0927-7757(95)03223-Z.
12. Roussel G., Michaux C., Perpete E. A. Multiscale molecular dynamics simulations of sodium dodecyl sulfate micelles: from coarse-grained to all-atom resolution. Journal of Molecular Modeling. 2014. 20: 2469−2476. https://doi.org/10.1007/s00894-014-2469-0.
13. Farafonov V. S., Lebed A. V. Developing and validating a set of all-atom potential models for sodium dodecyl sulfate. Journal of Chemical Theory and Computation. 2017. 13 (6): 2742–2750. https://doi.org/10.1021/acs.jctc.7b00181.
14. Farafonov V. S., Lebed A. V. Molecular dynamics simulation study of cetylpyridinum chloride and cetyltrimethylammonium bromide micelles. Kharkov University Bulletin, Chemistry Series. 2016. 27 (50): 25–30. https://doi.org/10.26565/2220-637X-2017-27-03.
15. Mchedlov-Petrossyan N. O. Protolytic equilibrium in lyophilic nano-sized dispersions: Differentiating influence of the pseudophase and salt effects. Pure and Applied Chemistry. 2008. 80 (7): 1459–1510. https://doi.org/10.1351/pac200880071459.
16. Hartland G.V., Grieser F., White L.R. Surface potential measurements in pentanol-sodium dodecyl sulphate micelles. Journal of Chemical Society, Faraday Transactions. 1978. 1 (83): 591–613. https://doi.org/10.1039/F19878300591.
17. Mchedlov-Petrossyan N. O., Vodolazkaya N. A., Yakubovskaya A. G., Grigoro­vich A.V., Alekseeva V. I., Savvina L. P. A novel probe for determination of electrical surface potential of surfactant micelles: N,N’-di-n-octadecylrhodamine. Journal of Physical Organic Chemistry. 2007. 20 (5): 332–344. https://doi.org/10.1002/poc.1150.
18. Fernandez M. S., Fromherz P. Lipoid pH indicators as probes of electrical potential and polarity in micelles. Journal of Physical Chemistry. 1977. 81 (18): 1755–1761. https://doi.org/10.1021/j100533a009.
19. Funasaki N. Micellar effects on the kinetics and equilibrium of chemical reactions in salt solutions Journal of Physical Chemistry. 1979. 83 (15): 1998–2003. https://doi.org/10.1021/j100478a014.
20. Grieser F., Drummond C. J. The physicochemical properties of self-assembled surfactant aggregates as determined by somemolecular spectroscopic probe techniques. Journal of Physical Chemistry. 1988. 92 (20): 5580–5593. https://doi.org/10.1021/j100331a012.
21. Khlestkin V. K., Polienko J. F., Voinov M. A., Smirnov A. I., Chechik V. Interfacial Surface Properties of Thiol-Protected Gold Nanoparticles: A Molecular Probe EPR Approach. Langmuir. 2008. 24 (3): 609–612. https://doi.org/10.1021/la702823n.
22. Voinov M. A., Kirilyuk I. A., Smirnov A. I. Spin-labeled pH-sensitive phospholipids for interfacial pka determination: synthesis and characterization in aqueous and micellar solutions. Journal of Physical Chemistry B. 2009. 113 (11): 3453–3460. https://doi.org/10.1021/jp810993s.
23. Bulavin L. A., Garamus V. M., Karmazina T. V., Pivnenko E. N. Measurements of structural and electrostatic parameters and surface tension of micelles of an ionic surfactant versus concentration, ionic strength of solution and temperature by small-angle neutron scattering. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 1998. 131 (1–3): 137–144. http://dx.doi.org/10.1016/S0927-7757 (96)03882-4.
24. Aniansson G. E. A. Dynamics and structure of micelles and other amphiphile structures. Journal of Physical Chemistry. 1978. 82 (26): 2805–2808. https://doi.org/10.1021/j100515a011.
25. Lyklema J. Surface charges and electrokinetic charges: distinctions and juxtapositionings. Colloids and Surfaces A: Physico­chemical and Engineering Aspects. 2011. 376 (1–3): 2–8. https://doi.org/10.1016/j.colsurfa.2010.09.021.
26. Cai Q., Hsieh M. J., Wang J., Luo R. Performance of nonlinear finite-difference Poisson – Boltzmann solvers. Journal of Chemical Theory and Computation. 2010. 6 (1): 203–211. https://dx.doi.org/10.1021%2Fct900381r.
27. Ohshima H., Healy T. W., White L. R. Accurate analytic expressions for the surface charge density/surface potential relationship and double-layer potential distribution for a spherical colloidal particle. Journal of Colloid and Interface Science. 1980. 90 (1): 17–26. https://doi.org/10.1016/0021-9797(82)90393-9.
28. Lukanov B., Firoozabadi A. Specific ion effects on the self-assembly of ionic surfactants: a molecular thermodynamic theory of micellization with dispersion for­ces. Langmuir. 2014. 30 (22): 6373−6383. https://doi.org/10.1021/la501008x.
29. Li C., Li L., Petukh M., Alexov E.. Progress in developing Poisson-Boltzmann equation solvers. Molecular Based Mathematical Biology. 2013. 1 (1): 42–62. https://dx.doi.org/10.2478%2Fmlbmb-2013-0002.
30. Schweke H., Mucchielli M.-H., Sacquin-Mora S., Bei W., Lopes A. Protein interaction energy landscapes are shaped by functional and also non-functional partners. Journal of Molecular Biology. 2020. 432 (4): 1183–1198. https://doi.org/10.1016/j.jmb.2019.12.047.
31. Tarasova E., Farafonov V., Taiji M., Nerukh D. Details of charge distribution in stable viral capsid. Journal of Molecular Liquids. 2018. 265: 585–591. https://doi.org/10.1016/j.molliq.2018.06.019.
32. Tarabara U., Vus K., Girnyk S., Kamneva N., Lavryk O., Mikhailyuta M., Trusova V., Gorbenko G. Effect of amyloid fibrils on electrokinetic properties of lipid vesicles. East European Journal of Physics. 2017. 4 (2): 19–28. https://doi.org/10.26565/2312-4334-2017-2-0.
33. Callenberg K. M., Choudhary O. P., de Fo­rest G. L., Gohara D. W., Baker N. A., Grabe M. APBSmem: a graphical interface for electrostatic calculations at the membrane. PLOS One. 2010. 5 (9): e12722. https://doi.org/10.1371/journal.pone.0012722
34. Baker N. A., Sept D., Joseph S., Holst M. J., McCammon J. A. Electrostatics of nanosystems: application to microtubules and the ribosome. Proceedings of the National Academy of Sciences of the U.S.A. 2001. 98 (18): 10037–10041. https://doi.org/10.1073/pnas.181342398.
35. Jurrus E., Engel D., Star K., Monson K., Brandi J., Felberg L. E., Brookes D. H., Wilson L., Chen J. Improvements to the APBS biomolecular solvation software suite: Improvements to the APBS Software Suite. Protein Science. 2017. 27 (1): 112–128. https://doi.org/10.1002/pro.3280.
36. Shannon R. D. Revised effective ionic radii and systematic studies of inter­atomie distances in halides and chaleogenides. Acta Crystallographica. 1976. A32: 751–767. https://doi.org/10.1107/S0567739476001551.
37. Connolly M. Analytical molecular surface calculation. Journal of Applied Crystallography. 1983. 16 (5): 548–558. https://doi.org/10.1107/S0021889883010985.

Downloads

Download data is not yet available.