RECYCLING TECHNOLOGY OF ACTIVE MATERIALS OF THE ZINC-MANGANESE CURRENT SOURCES
№4

Keywords

chemical current source, recycling, separation, hydrometallurgical method, environment, pollution.

How to Cite

Diamant, V., & Simonov, A. (2021). RECYCLING TECHNOLOGY OF ACTIVE MATERIALS OF THE ZINC-MANGANESE CURRENT SOURCES. Ukrainian Chemistry Journal, 87(4), 128-136. https://doi.org/10.33609/2708-129X.87.04.2021.128-136

Abstract

It is being investigated whether it is possible to develop a low-cost method for processing used Zn-MnO2 primary chemical power sour­ces, which is focused on a closed cycle of ge­nerating zinc-manganese power sources from wasted batteries. It is proposed that chemical processing reagents be replaced with less dangerous ones for the environment and people, in accordance with «green chemi» principles. The existing hydrometallurgical method of processing of primary current sources with selective extraction of the spent part of the anode mass is modified and laboratory processed. The stage of additional extraction of arsenic is entered. The proposed technological scheme avoids heavy air loads in the form of carbon dioxide emissions by eliminating the stage of burning organic matter. The use of acetic acid allows to avoid sulfuric acid discharges and to obtain high-quality for secondary production of cathode mass of new chemical current sour­ces, as well as to obtain technical zinc powder and active zinc powder using hydrometallurgical technology for anode mass production of primary batteries. Also, the presence of stages of extraction of heavy metal ions (Hg2+, Pb2+, Cd2+) and Arsenic to obtain products that can be further used in other technological processes makes this technology virtually waste-free, and in the stages of recovery of acetic acid and hypochlorite – closed. Thus, the use of the proposed technological schemes allows to make such production not only a little harmful to the environment, but also for workers, as well as to simplify the requirements for technological equipment.

https://doi.org/10.33609/2708-129X.87.04.2021.128-136
№4

References

Ministerstvo dokhodiv i zboriv Ukrainy. Mytna statystyka. Sumarnyi obsiah importu ta ekportu okremykh pidhrup tovariv za kodamy UKTZED (8506). 2021.

http://sfs.gov.ua/ms/f11 [in Ukrainian].

Poliuzhyn I., Tsiupko F., Sribna A., Laruk M., & Yatchyshyn Y. Tekhnolohii utylizatsii vidpratsovanykh marhantsevo-tsynkovykh khimichnykh dzherel strumu. Stalyi rozvytok – stan ta perspektyvy: materialy mizhnarodnoho naukovoho sympoziumu SDEV ‘2018, Lviv – Slavske, Ukraina. 2018: 194–196. [in Ukrainian].

Sheremetev, A. N. Utilizatsiya otrabotannyih galvanicheskih elementov pitaniya. ББК 72+ 74я431 Н34. 2017: 128. [in Russian].

Kromton T. Pervichnye istochniki toka. Moskva: Mir. 1986. 328. [in Russian].

Korovin N. V. Elektrohimicheskaya ener­getika. Energoatomizdat. 1991. 264. [in Russian].

Ferella F., De Michelis I., Beolchini F., Innocenzi V., Vegliò F. Extraction of zinc and manganese from alkaline and zinc-carbon spent batteries by citric-sulphuric acid solution. International Journal of Chemical Engineering. 2010. 2010(8): 1–13.

Chen W., Liao C., Lin K. Recovery Zinc and Manganese from Spent Battery Powder by Hydrometallurgical Route. Energy Procedia. 2017. 107: 167–174.

Varipaev V. N., Kudryavtseva V. N. Praktikum po prikladnoy elektrohimii: uchebnoe posobie dlya vuzov. Leningrad: Himiya. 1990. 304. [in Russian].

Sofie Mihailova. Hydrometallurgical treatment of spent alkaline and zinc-carbon batteries. Department of Chemistry and Chemical Engineering. Chalmers University of Technology Gothenburg. Sweden. 2015: 1–21.

Rafael Gudim da Silva, Cristiano Nunes da Silva e Júlio Carlos Afonso. Recovery of manganese and zinc from spent Zn-C and alkaline batteries in acidic medium. Quim. Nova. 2010. 33(9): 1957–1961.

Ferella F., De Michelis I., Pagnanelli F., Beolchini F., Furlani G., Navarra M., Veglio F.,Toro I. Recovery of zinc and manganese from spent batteries by different leaching systems. Acta Metallurgica Slovaca. 2006. 12: 95–104.

Sverdel E. S., Mihajlichenko A. I., Jagodin G. A. Kompleksnaja pererabotka otho­dov suhih gal’vanicheskih jelementov. Uspehi v himii i himicheskoj tehnologii. 2007. 21(9): 13–16. [in Russian].

Ferella F., Michelis I., Veglio F. Process for the recycling of alkaline and zinc–carbon spent batteries. Journal of Power Sources. 2008. 183: 805–811.

Ptitsin A. N., Galkova L. I, Ledviy V. V., Skopov S. V. Sposob utilizatsii otrabotannyih himicheskih istochnikov toka, za­ya­vitel: OAO Elizavetinskiy opyitnyiy zavod. Patent RU 2164955 MPK C22B. 10.04.2001. [in Russian].

Yeşiltepe S., Buğdayci M., Yücel O., Seşen M. K. Recycling of Alkaline Batteries via a Carbothermal Reduction Process. Batte­ries. 2019. 35(5): 1–13.

Hasegawa M., Ueyama R., Kashiwaya Y., Hirato, T. Recovery of Zinc from used alkali-manganese dry cells. Journal of Sustainable Metallurgy. 2015. 1(2): 144–150.

GOST 3640-79. Tsink tehnicheskie uslo­viya. Moskva: Gosstandart Rossii. 1980. [in Russian].

ITS 13-2016. Proizvodstvo svintsa, tsinka i kadmiya. Moskva: Byuro NDT. 2016. [in Russian].

Remi G., Novoselova A. V. Kurs neorga­nicheskoy himii. Moskva: IIL, 1963. Vol 1. 922. [in Russian].

Zhivopistsev V. P., Selezneva E. A. Anali­tichesraya himiya tsinka. Moskva: Nauka. 1975. 200. [in Russian].

Lavruhina A. K., Yukina L. V. Analitichesnaya himiya margantsa. Moskva: Nauka. 1974. 221. [in Russian].

Voznesenskij, D. N., Voinkova, L. V., & Finkel’shtejn, D. N. Sposob poluchenija cinka jelektroliticheskim putem. Patentnoe vedomstvo: SSSR. God publikacii: 1940. Nomer zajavki: 20576. Patent SU 58170 A1 31.10.1940. [in Russian].

Adachi S. GaAs, AlAs, and Al x Ga1− x As: Material parameters for use in research and device applications. Journal of Applied Physics. 1985. 58(3): R1–R29.

Downloads

Download data is not yet available.