salt, cation, anion, solvent, ionic liquids, coordination compounds of boron, electrolytes for electrochemical energy storages.

How to Cite

Diamant, V. (2021). NOVEL NON-AQUEOUS ELECTROLYTES BASED ON COORDINATION BORON COMPOUNDS. Ukrainian Chemistry Journal, 87(3), 41-60.


The review provides a classification of electrolytes for modern chemical power sources, supercapacitors, sodium and lithium-ion batteries depending on changes in the physicochemical properties of salts and the products of their interaction with the solvent. A comparative analysis of physicochemical properties of salts depending on the structure of the cation and anion, and the influence of these properties on the properties of final solutions of electrolytes on the example of different classes of ionic liquids and chelatoborates of alkali metals and ammonium was conducted. The dependence of the physicochemical properties of electrolytes (solubility, electrical conductivity of solutions and the range of potentials of electrochemical stability) on the nature of the chelate ligand, electron donor and electroacceptor substituents in the bis (chelate) borate anion is analyzed. The electrical conductivity of salt solutions and ranges of potentials of electrochemical stability of the corresponding electrolytes containing other anions and used for a long time in chemical current sources are carried out. The advantages and disadvantages of using liquid electrolytes compared to solid and polymer electrolytes in terms of similarity of their structures have been detected. It is shown that the nature of the chelate ligand, electro-donor and electro-acceptor substituents in the bis (chelato) borate anion is an important factor in regulating the interaction with aprotic dipolar solvents. Mixed salts with two different chelate ligands typically combine the best characteristics of the corresponding monochelate compounds, but the methods for their preparation and purification are technologically significantly more complex compared to monochelate compounds. The analysis of the mechanism of formation of a protective film on a surface of electrode materials, dependence of potential on its formation and on the chemical nature of ligands is made. It is noted that bis (chelato) borate salts are more environmentally friendly compared to fluorine-containing complex salts. Emphasis is placed on the physicochemical properties of solutions of the most promising chelatoborate salts for use in lithium and sodium ion batteries, supercapacitors and electrolytic capacitors, and it is shown that bis (oxalate) borates and bis (salicylate gold) borates occupy ) borates in terms of electrical conductivity, solubility and potential range of electrochemical stability.



Damaskin B. B., Petriy О. A. Electroche­mistry. Moscow: Kolos S. 2006. 672 p. [in Russian].

Wietelmann U., Lischka U., Schade K., Panitz J.-C. Boron Chelate Complexes. Patent: U. S. 7709663. 04.05.2010.

Xue Z. M., Zhao J. F., Ding J., Chen C. H. LBDOB, a new lithium salt with benze­nediolato and oxalato complexes of boron for lithium battery electrolytes. Journal of Power Sources. 2010. 195(3): 853–856.

Barthel J., Wühr M., Buestrich R., Go­res H. J. A New Class of Electrochemically and Thermally Stable Lithium Salts for Lithium Battery Electrolytes I. Synthesis and Properties of Lithium bis[1, 2-benzene­diolato (2-)-O, O′]borate. Journal of the Electrochemical Society. 1995. 142(8): 2527–2531.

Xue Z. M., Ji C. Q., Zhou W., Chen C. H. A new lithium salt with 3-fluoro-1, 2-benzenediolato and oxalato complexes of boron for lithium battery electrolytes. Journal of Power Sources. 2010. 195(11): 3689–3692.

Gray F. M. Solid polymer electrolytes: fundamentals and technological applications. New York: VCH. 1991. 256 p.

Reichardt K. Solvents and environmental effects in organic chemistry. Moscow: World. 1991. 763 p.

Kustov, L. M., T. V. Vasina, and V. A. Ksenofontov. Ion Liquids as Catalytic Media. Ross. Khim.Zh. 2004. 48(6): 13.

Ketabi S. Polymer–Ionic liquid Electrolytes for Electrochemical Capacitors: PhD thesis Toronto. 2015. 199 p.

Jain N., Kumar A., Chauhan S., Chauhan S. Chemical and biochemical transformations in ionic liquids. Tetrahedron. 2005. 61(5): 1015–1060.

Lall-Ramnarine S. I., Castano A., Subramaniam G., Thomas M. F., Wishart J. F. Synthesis, characterization and radiolytic properties of bis(oxalato)borate containing ionic liquids. Radiation Physics and Chemistry. 2009. 78(12): 1120–1125.

Vijayaraghavan R., MacFarlane D. R. Ef­fect of hydrophobic and hydrophilic organic salts on charge transfer polymeri­sa­tion of styrene. European polymer journal. 2006. 42(8): 1830–1835.

Lewandowski A., Sґwiderska-Mocek A. Ionic liquids as electrolytes for Li-ion batteries–An overview of electrochemical studies. Journal of Power Sources. 2009. 194(2): 601–609.

Wang J., Li Y., Sun X. Challenges and opportunities of nanostructured materials for aprotic rechargeable lithium–air batteries. Nanoеnergy. 2013. 2(4): 443–467.

Potapenko O. V., Kramarenko O. A., &Prysjagnyj V. D. Solvate electrolytes for lithium current sources. Visn. Lviv. univ. Ser. Him.2002. 42: 146–148. [in Ukrainian].

Jain, P., Kumar, A. Comparable Ionicity of the Solutions of Aprotic and Protic Ionic Liquids by Anion Substitution. Journal of Solution Chemistry. 2017. 46(6): 1315–1327.

Wojnarowska, Z., Feng, H., Diaz, M., Ortiz, A., Ortiz, I., Knapik-Kowalczuk, J., ... &Paluch, M. Revealing the charge transport mechanism in polymerized ionic liquids: Insight from high pressure conductivity studies. Chemistry of Materials. 2017. 29(19): 8082–8092.

Gorobets M. I., Kirillov S. A., Gafurov M. M., Ataev M. B., &Tretyakov D. O. Solvation and association of ions in system LiClO₄ dimethylsulfoxide. Dopovidi NAN Ukrainy. 2014. 1:125–129. [in Ukrainian].

Kirillov S. A., Gorobets M. I., Gafu­rov M. M.,Rabadanov K. S., &Ataev M. B. Temperature dependence of associative equilibria DMSO by Raman spectra. Journal PhizitsheskojHimii. 2014. 88(1):140–142. [in Russian].

Gafurov, M. M., Kirillov, S. A., Raba­da­nov, K. S., Ataev, M. B., &Tret’ya­kov, D. O. Spectroscopic study of solvation processes and ionic association in lithi­um salt solutions with ionic and ap­roticsolvents. Journal of Structural Chemistry. 2014. 55(1): 67–71.

Kirillov, S. A., Gorobets, M. I., Tretyakov, D. O.,Ataev, M. B., &Gafurov, M. M. Phase diagrams and conductivity of lithium salt systems in dimethyl sulfoxide, propylene carbonate and dimethyl carbonate. Journal of Molecular Liquids. 2015. 205: 78–84.

Gafurov, M. M., Kirillov, S. A., Goro­bets, M. I., Rabadanov, K. S., Ataev, M. B., Tretyakov, D. O., &Aydemirov, K. M. Phase equilibria and ionic solvation in the lithium tetrafluoroborate – dimethylsulfoxide system. Journal of Applied Spectroscopy. 2015. 81(6): 912–918.

Xu K. Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chemical Reviews. 2004. 104(10): 4303–4417.

Nikolsky B.P. Handbook of the chemist. Leningrad: Chemistry, 1971. 1169 p. (2). [rus]

Dudley J., Wilkinson D., Thomas G., LeVae R. Conductivity of electrolites for rehargeble lithium batteris. Journal of Poweer Sources. 1991. 35(1): 59–82.

Yang H., Zhuang G., Ross P. Thermal Stability of LiPF6 Salt and Li-ion Battery Electrolytes Containing LiPF6. Journal of Power Sources. 2006. 161(1): 573–79.

Webber A. Conductivity and Viscosity of Solutions of LiCF3SO3, Li(CF3SO2)2N, and Their Mixtures. Journal of The Electrochemical Society. 1991. 138(9): 2586–2590.

Schalkwijk W. Advances in Lithium-ion Batheries. New York: Kluwer Academic. 2002. 507 p.

Dominey L., Koch V., Blakley T. Thermally stable lithium salts for polymer electrolytes. ElectrochimicalActa. 1992. 37(9): 1551–1554.

Sirenko I. Lithium fluorosulfonate as a component of electrolytes of lithium current sources: PhD thesis: 02.00.05. Kyiv. 2000. 118 p. [in Ukrainian].

Kirchner B. Ionic Liquids Volume Editor. Heidelberg: Springer. 2009. 354 p.

Dean P. M., Pringle J. M., MacFarlane D. R. Structural analysis of low melting organic salts: perspectives on ionic li­quids. Physical Chemistry Chemical Physics. 2010. 32(12): 9144–9153.

House L., Hill J. Ionic Liquids Physicochemical Properties. Amsterdam: Elsevier. 2009. 478 p.

Lee H. S., Yang X. Q., McBreen J., Okamoto Y., Choi L. S. A new family of anion receptors and their effect on ion pair dissociation and conductivity of lithium salts in non-aqueous solutions. ElectrochimicalActa. 1995. 40 (13–14): 2353–2356.

McBreen, J., Lee H. S., Yang X. Q. Synthesis of a new family of fluorinated boronate compounds as anion receptors and studies of their use as additives in lithium battery electrolytes. Proceedings on China International Battery Fair. 2001. 97–98(7): 566–569.

Pershina E.D., Karpushin N.A., Kazdo­bin K.A. Aluminosilicate conductivity at the presence of water. Surf. Engin. Appl. Electrochem. 2010. 46 (10): 339–347.

Diamant V.A., Malovanyy S.M., Pershina K.D., Kazdobin K.A. Electroche­mi­cal properties of Sodium bis[salicylato(2-)]-borate - γ-butyrolactone Electrolytes in Sodium Battery. Materialstoday Proceedings. 2019. 6(2): 86–94.

Pershina, K.D., Kokhanenko, V.V., Mas­liuk, L.N. et al. Energy transformation in water and oxygen-containing electrolytes. Surf. Engin. Appl. Electrochem. 2012. 48(3): 90–96.

Diamant, V.A., Pershina, E.D., Trachev­sky, V.V. et al. Physicochemical properties of tetramethylammoniumbis(salicylo)borate. Russ. J. Appl. Chem. 2015. 88(9): 901–907.

Diamant, V., Trachevskii, V., Pershina, K., Ogenko, V., Donchu, C., Huawen, H., Min, C., Xiaowen, W., &Menglei, C. (2019). Specialties of the structure and con­ductivity of the non-aqueous electrolytes based on alkali metal bis(salicyl)borates and bis(oxalate)borates. Ukrainian Chemistry Journal. 2019. 85(3): 49–55.

Schwartz, E.M. Complex boron compounds with polyoxy compounds. Riga: Publishing House of the Academy of Sciences of the Latvian SSR. 1968. 224 p.

Dobosh D. Electrochemical Constants: A Handbook for Electrochemists. Moscow: Mir. 1980. 365 p.

Gali´nskiM., Lewandowski A., Stepniak I. Ionic liquids as electrolytes. Electrochimicaacta. 2006. 51: 5567–5580.

Syromyatnikov V. G., Pascal L. P., Mashkin O. A. Polymeric electrolytes for lithi­um chemical current sources. Chemistry Advances. 1995. 64(3): 265–274.

Ivanov-Shits A. K., Demyanets L. N. Materials of the Ionic of a Solid. Priroda. 2003. (12): 35–43.

Gores H. J., Multerer M., Schweiger H.-G. ElektrolytzurVerwendung in elektroche­mishenZellen. Patent DE 10 2006 055 770.06.28. 2007.

Xue Z. M., Wu K. N., Liu B., Chen C. H. New lithium salts with croconato-complexes of boron for lithium battery electrolytes. Journal of Power Sources. 2007. 171(2): 944–947.

Barthel, J., Buestrich R., Carl E., Gores H. J. A New Class of Electrochemically and Thermally Stable Lithium Salts for Lithi­um Battery Electrolytes. Journal of the Electrochemical Society. 1996. 143(11): 3565–3571.

Wietelmann U., Schade K., Lischka U. Tris (oxalato) phosphates, method for their preparation and their use. Patent 6,693,212 U.S. 17.02.2004.

Handa M., Suzuki M., Suzuki J., Kanema­tsu H., Sasaki Y. A new lithium salt with a chelate complex of phosphorus for lithium battery electrolytes. Electrochemical and solid-state letters. 1999. 2(2): 60–62.

Nanbu N., Tsuchiya K., Sasaki Y. Electrolytic properties of lithium chelatophosphates and application to lithium batteries. Journal of power sources. 2005. 142(1–2): 333–338.

Barthel J., Schmid A., Gores H. J. A New Class of Electrochemically and Thermally Stable Lithium Salts for Lithium Battery Electrolytes. V. Synthesis and Properties of Lithium Bis [2, 3-pyridinediolato (2−)-O, O′] borate. Journal of the Electrochemical Society. 2000. 147(1): 21–24.

Barthel J., Schmidt M., Gores H. J. Lithium Bis [5-fluoro-2-olato-1-benzenesulfonato (2-)-O, O′] borate (1-), a New Anodically and Cathodically Stable Salt for Electrolytes of Lithium‐Ion Cells. Journal of The Electrochemical Society. 1998. 145(2): L17–L20.

Barthel J., Buestrich R., Gores H. J., Schmidt M., Wühr M. A new class of electrochemically and thermally stable lithi­um salts for lithium battery electrolytes IV. Investigations of the electrochemical oxidation of lithium organoborates.Journal of The Electrochemical Society. 1997. 144(11): 3866–3870.

Xu W., Shusterman A. J., Marzke R., Angell C. A. Lithium (MalonatoOxalato) Borate: A New Asymmetric Chelatoborate Salt. In The 204th Meeting of the Electrochemical Society, Orlando, Florida USA. 2003. 10(10): 110–116.

Panitz J.-C., Pötschke D. R., Wietelmann U. Leitsalzefürgalvanischezellen, De­ren­herstellung und Verwendung. Patent 086274 DE. 15.09.2005.

Engelke, Simon. Current and future sodium-ion battery research. International Journal of Energy Storage. Draft 2013: 1–7.

Cutler R. W. Electrolyte Optimization Study for TiO2 Nanotube Electrode in Sodium Ion Batteries. PhD thesis: Boise. 2015.

Fang Y., Xiao L., Qian J., Ai X., Yang H., Cao Y. Mesoporous amorphous FePO4nanospheres as high-performance cathode material for sodium-ion batteries. Nano letters. 2014. 14(6): 3539–3543.

Liu Y., Xu Y., Han X., Pellegrinelli C., Zhu Y., Zhu H., Hu L. Porous amorphous FePO4 nanoparticles connected by single-wall carbon nanotubes for sodium ion battery cathodes. Nano letters. 2012. 12(11): 5664–5668.

Seh Z. W., Sun J., Sun Y., Cui Y. A highly reversible room-temperature sodium me­tal anode. ACS central science. 2015. 1(8): 449–455.

Moreau P., Guyomard D., Gaubicher J., Boucher F. Structure and stability of so­dium intercalated phases in olivine FePO4. Chemistry of Materials. 2010. 22(14): 4126–4128.

Zhu Y., Xu Y., Liu Y., Luo C., Wang, C. Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries. Nanoscale. 2013. 5(2): 780–787.

Lee K. T., Ramesh T. N., Nan F., Botton G., Nazar L. F. Topochemical synthesis of sodium metal phosphate olivines for sodium-ion batteries. Chemistry of Materials. 2011. 23(16), 3593–3600.

Pan H., Hu Y. S., Chen L. Room-tempe­rature stationary sodium-ion batteries for large-scale electric energy storage. Energy & Environmental Science. 2013. 6(8), 2338–2360.

Yu C. Y., Park J. S., Jung H. G., Chung K. Y., Aurbach D., Sun Y. K., Myung S. T. NaCrO2 cathode for high-rate sodium-ion batteries. Energy & Environmental Science. 2015. 8(7): 2019–2026.

Myung S. T., sang Park J., Jung H. G., Chung K. Y., Aurbach D., Yu C. Y., Sun Y. K. NaCrO2 Cathode for High-Rate Sodium-Ionbatteries. In Meeting Abstracts The Electrochemical Society. 2016. 9: 664–664.

Ding J. J., Zhou Y. N., Sun Q., Fu Z. W. Cycle performance improvement of NaCrO2 cathode by carbon coating for sodium ion batteries. Electrochemistry Communications. 2012. 22: 85–88.

Komaba S., Takei C., Nakayama T., Ogata A., Yabuuchi, N. Electrochemical inter­calation activity of layered NaCrO2 vs. LiCrO2. Electrochemistry Communications. 2010. 12(3): 355–358.

Xia X., Dahn J. R. NaCrO2 is a fundamentally safe positive electrode material for sodium-ion batteries with liquid electrolytes. Electrochemical and Solid-State Letters. 2011. 15(1): A1–A4.

Zhao J., Zhao L., Dimov N., Okada S., Nishida T. Electrochemical and thermal properties of α-NaFeO2 cathode for Na-ion batteries. Journal of The Electrochemical Society. 2013. 160(5): A3077–A3081.

Yabuuchi N., Yoshida H., Komaba S. Crystal structures and electrode performance of alpha-NaFeO2 for rechargeable sodium batteries. Electrochemistry. 2012. 80(10): 716–719.

Yabuuchi N., Kajiyama M., Iwatate J., Nishikawa H., Hitomi S., Okuyama R., Komaba S. P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for re­chargeable Na batteries. Nature materials. 2012. 11(6): 512.

Shirpour M., Zhan X., Doeff M. In Sodium-Ion Batteries: Beyond Lithium-Ion. In2015 TechConnect World Innovation Conference. 2015.

Ge C., Wang L., Xue L., Wu Z. S., Li H., Gong Z., Zhang X. D. Synthesis of novel organic-ligand-doped sodium bis(oxalate)borate complexes with tailored thermal stability and enhanced ion conductivity for sodium ion batteries. Journal of Power Sources. 2014. 248: 77–82.

Zavalij P. Y., Shoufeng Y., Whittingham M. S. Structures of potassium, sodium and lithium bis(oxalato)borate salts from powder diffraction data. ActaCrystallographica Section B: Structural Science. 2003. 59(6): 753–759.

Waldvogel S., Malkowsky I., Griesbach U.,Pötter H. Novel fluorine-free electrolyte system for supercapacitors. Electrochemistry Communications. 2009. 11(6): 1237–1241.

Nanbu N., Ebina T., Uno H., Ishizawa S. Physical and electrochemical properties of quaternary ammonium bis(oxalato)borates and their application to electric double-layer capacitors. ElectrochimicaActa. 2006. 52(4): 1763–1770.

Bruglachner, H. Neueelektrolytefürdoppelschichtkondensatoren. PhD thesis Regensburg. 2004. 224 p.

Smirnova N. N., Tsvetkova L. Y., Bykova T. A., Ruchenin V. A., Marcus Y. Thermodynamic properties of tetrabutylammonium iodide and tetrabutylammoniumtetraphenylborate. ThermochimicaActa. 2009. 483(1–2): 15–20.

Wietelmann U., et al. Method for the production of hydrogen-bis(chelato)borates and alkali metal-bis(chelato)borates. Pa­tent U.S. No. 7, 208,131. 24.04.2007.

Ue M., Shima K., Mori S. Electrochemical properties of quaternary ammonium borodiglycolates and borodioxalates. Electrochimicaacta. 1994. 39(18): 2751–2756.

Delgado M. I., Jurado N. M., Vargas R. A. Phase diagram of polymer electrolyte:(x)(PEO)-(1-x) CF3COOLi. RevistaFacul­tad de Ingeniería Universidad de Anti­oquia. 2012. (62): 77–82.

Kaymaksiz S., Wilhelm F., Wachtler M., Wohlfahrt-Mehrens M., Hartnig C., Tscher­nych I., Wietelmann U. Electrochemical stability of lithium salicylato-borates as electrolyte additives in Li-ion batteries. Journal of Power Sources. 2013. 239: 659–669.

Xie B., Li L., Li H., Chen L. A preliminary study on a new LiBOB/acetamide solid phase transition electrolyte. Solid State Ionics. 2009.180(9–10): 688–692.

Yang L., Furczon M. M., Xiao A., Lucht B. L., Zhang Z., Abraham D. P. Effect of impurities and moisture on lithium bis(oxalato)borate (LiBOB) electrolyte performance in li­thiumion cells. Journal of Power Sources. 2010. 195(6): 1698–1705.


Download data is not yet available.