Tl2Se–TlInSe2–Tl4P2Se6 QUASITERNARY SYSTEM
№4

Keywords

selenodiphosphate, state diagrams, crystal structure, solid solutions.

How to Cite

Barchiy, I., Tovt, V., Piasecki, M., Fedorchuk, A., Pogodin, A., Filep, M., & Stercho, I. (2019). Tl2Se–TlInSe2–Tl4P2Se6 QUASITERNARY SYSTEM. Ukrainian Chemistry Journal, 85(2), 101-110. https://doi.org/10.33609/0041-6045.85.2.2019.101-110

Abstract

Complex chalcogenide compound are widely used as working elements for semiconductor optical technology, thermal generation, solar power. Special attention is paid to compounds of the M2P2Se6 type (M – Ag, Cu) which due to its layer crystal structure possess promising ferroelectric, thermoelectric and electro-optical properties. Heterovalent substitutions of cations 2М2+ ® 4M1+ in the composition of M2P2Se6 type compounds must leads to deformation of the crystal structure, changing in the value of the dipole moment and, accordingly, to change the electro-physical properties.

The Tl2Se–In2Se3–“P2Se4” system characterized by the formation of intermediate complex compounds which melts congruently TlInSe2 (1023 К), Tl4P2Se6 (758 К), TlInP2Se6 (875 К) and TlIn5Se8 (melts incongruently L+In2Se3«TlIn5Se8 at 1029 К), In4(P2Se6)3 (formed by syntactic reaction at 880 К). Triangulation of the Tl2Se–In2Se3–“P2Se4” system was shown that then divided on secondary quasiternary systems, one of them is Tl2Se–TlInSe2–Tl4P2Se6.

Phase equilibria in the Tl2Se – TlInSe2 – Tl4P2Se6 quasiternary system were studied using classical methods of physicochemical analysis DTA (chromel-alumel thermocouple, with an accuracy of ±5 K), XRD (DRON-3-13 diffractometer, Cu Ka radiation, Ni filter, Guinier Huber G670 diffractometer, CuKα1 radiation), MSA (metallographic microscope Lomo Metam R1) in combination with the simplex method of mathematical modeling of phase equilibria in multi-component systems. Crystal structure calculation was carried out with program WinCSD.

Investigation of physical-chemical interaction allowed to constructed perspective view of phase state diagram and liquidus surface projection of the Tl2Se–TlInSe2–Tl4P2Se6 ternary system. In the ternary system formed the boundary solid solution: a- on the basis of Tl2Se, b- on the basis of TlInSe2, g-, d-, e- on the basis of ltm-, mtm- and htm-Tl4P2Se6 (ltm, mtm, htm – low, middle and high temperature modification, respectively). The liquidus of the ternary system consists of primary crystallization areas: Tl2Se-е1-Е1-е2-Tl2Se (a phase), TlInSe2-е3-U2-U1-E1-TlInSe2 (b phase), m1-U1-E1-e2-m1 (g phase), m2-U2-U1-m1-m2 (d phase) and Tl4P2Se6-e5-U2-m2-Tl4P2Se6 (ε phase). The Tl2Se–TlInSe2–Tl4P2Se6 quasiternary system is characterized by the processes: monovariant eutectic L«htmTl4P2Se6+TlInSe2 (e5-U2, 776-693 К), monovariant eutectic L«Tl2Se+TlInSe2 (e1-Е1, 614-539 К), monovariant eutectic L«Tl2Sе+ltmTl4P2Se6 (e2-Е1, 610-539 К); monovariant peritectic L+mtmTl4P2Se6«ltmTl4P2Se6 (m1-U1, 640-620 К); monovariant peritectic L+htmTl4P2Se6« mtmTl4P2Se6 (m2-U2, 747-693 К); monovariant peritectic L+mtmTl4P2Se6«TlInSe2 (U2-U1, 693-620 К); monovariant peritectic L+ltmTl4P2Se6«TlInSe2 (U1-E1, 620-539 К). Lines of the monovariant equilibria are crossed in three point: U2 – invariant peritectic process L+htmTl4P2Se6«TlInSe2+mtmTl4P2Se6 (12 mol.% Tl2Se, 20 mol.% TlInSe2, 68 mol.% Tl4P2Se6, 693 К), U1 – invariant peritectic process L+mtmTl4P2Se6«TlInSe2+ltmTl4P2Se6 (38 mol.% Tl2Se, 9 mol.% TlInSe2, 53 mol.% Tl4P2Se6, 620 К), E1 – invariant eutectic process L « Tl2Se+TlInSe2+ltmTl4P2Se6 (47 mol.% Tl2Se, 7 mol.% TlInSe2, 46 mol.% Tl4P2Se6, 539 К). New complex compounds were not observed in the ternary system. Limited solid solutions on the basis of TlInSe2, Tl4P2Se6 initial compounds are not up to 5–8 mol%.

Crystal-structure studies of Tl2Se, TlInSe2 and Tl4P2Se6 complex chalcogenides were carried out by a powder method, refinement of the structural parameters – by the Rietveld method. The lattice parameters are: Tl2Se – Р4/n, а=8,540; с=12,380 Å, TlInSe2 – I4/mcm, a=8.064, c=6.833 Å, Tl4P2Se6 – P121/c1, a=12.239, b=9.055, c=12.328 Å, b=98.83. Crystal-chemical analysis of the compounds showed that they are characterized by a mixed ion-covalent type of chemical bond. During the transition from the binary Tl2Se to TlInSe2 ternary compound the covalent component of the In–Se bond is enhanced, the opposite change is observed for Tl4P2Se6, an increase in the ion component of the Tl–Se bond. The study of the mechanisms of formation of solid solutions showed that with the reciprocal solubility of the TlInSe2, Tl4P2Se6 ternary compounds characterized by the formation of substitution structure, the dissolution of Tl2Se in ternary selenides follows the substitution and subtraction mechanism.

https://doi.org/10.33609/0041-6045.85.2.2019.101-110
№4

References

Kanadzidis M.G. The Role of Solid State Chemistry in the Discovery of New Thermoelectric Materials. in: Terry M. Tritt (Eds.), Semiconductors and Semimetals. (San Diego, San Francisco, N.Y.: Academ. Press, 2001).

Shevelkov A.V. Chemical aspects of creation of thermoelectric materials. Usp. Khim. 2008. 77: 867.

McGuire M.A., Reynolds T.K., DiSalvo F.J. Exploring Thallium Compounds as Thermoelectric Materials: Seventeen New Thallium Chalcogenides. Chem. Mater. 2005. 17: 2875. DOI: 10.1021/cm050412c

Barchij I.E., Sabov M.Yu, El-Naggar A.M., AlZayed N. S., Albassam A.A., Fedorchuk A.O., Kityk I.V. Tl4SnS3, Tl4SnSe3 and Tl4SnTe3 crystals as novel IR induced optoelectronic materials. J. Mater. Sci.: Mater. Electron. 2016. 27: 3901. DOI: 10.1007/s10854-015-4240-4

Reshak A.H., Alahmed Z.A., Barchij I., Sabov M., Plucinski K.J., Kityk I.V., Fedorchuk A.O. The influence of replacing Se by Te on electronic structure and optical properties of Tl4PbX3 (X=Se or Te): Experimental and Theoretical investigations. RSC Adv. 2015. 5: 1. DOI: 0.1039/C5RA20956K

Israel R., De Gelder R., Smits J.M.M., Beurskens P.T., Eijt S.W.H., Rasing T.H., Van Kempen H., Maior M.M., Motrya S.F. Crystal structures of di-tin-hexa(seleno)hypodiphosphate, Sn2P2Se6, in the ferroelectric and paraelectric phase. Z. Kristallogr. 1998. 213: 34. DOI: https://doi.org/10.1524/zkri.1998.213.1.34

Kanatzidis M.G. New directions in synthetic solid state chemistry: chalcophosphate salt fluxes for discovery of new multinary solids. Solid State Mat. Sci. 1997. 2: 139. DOI: https://doi.org/10.1016/S1359-0286(97)80058-7

Chung I., Karst A.L., Weliky D.P. , Kanatzidis M.G. [P6Se12]4–: A Phosphorus-Rich Selenophosphate with Low-Valent P Centers. Inorg. Chem. 2006. 45: 2785. DOI: 10.1021/ic0601135

Galdamez A., Manriquez V., Kasaneva J., Avila R.E.: Synthesis, characterization and electrical properties of quaternary selenodiphosphates: AMP2Se6 with A = Cu, Ag and M = Bi, Sb. Mat. Res. Bull. 2003. 38: 1063. DOI:10.1016/S0025-5408(03)00068-0

Pfeiff R., Kniep R.: Quaternary selenodiphosphates(IV): M(I)M(III)[P2Se6], (M(I)= Cu, Ag; M(III)= Cr, Al, Ga, In). J. Alloys Comp. 1992. 186: 111. DOI: https://doi.org/10.1016/0925-8388(92)90626-K

Gave M.A., Bilc D., Mahanti S.D., Breshears J.D., Kanatzidis M.G.: On the lamellar compounds CuBiP2Se6, AgBiP2Se6 and AgBiP2S6. antiferroelectric phase transitions due to cooperative Cu+ and Bi3+ ion motion. Inorg. Chem. 2005. 44: 5293. DOI: 10.1021/ic050357+

Cajipe V.B., Ravez J., Maisonneuve V., Simon A., Payen C., Von Der Muhll R., Fischer J.E. Cupper ordering in lamellar CuMP2S6 (M=Cr, In) Transition to an antiferielectric or ferielectric phase. Ferroelectrics. 1996. 185: 135. DOI: https://doi.org/10.1080/00150199608210497

Bourdon X., Maisonneuve V., Cajipe V.B., Payen C., Ravez J., Fischer J.E. Cupper sublattice ordering in layered CuMP2S6 (M=Cr, In). J. Alloys Comp. 1999. 283: 122. DOI: https://doi.org/10.1016/S0925-8388(98)00899-8

Mucha I. Phase diagram for the quasi-binary thallium(I) selenide–indium(III) selenide system. Thermochimica Acta. 2012. 550: 1. DOI: 10.1016/j.tca.2012.09.028

Voroshilov Y.V., Gebesh V.Y., Potorii M.V. Phase equilibria in the system In-P-Se and crystal structure of β-In4(P2Se6)3. Inorg. Mater. 1991. 27: 2141.

Tovt V.О., Barchij I.E., Piasecki M., Kityk I.V., Fedorchuk A.O., Solomon А.М., Pogodin A.I. Triangulation of the Tl2Se–In2Se3–“P2Se4” quasiternary system. Nauch. Vestn. Uzhgorod. Univ. (Ser. Khim.). 2016. 2(36): 14. [in Ukrainian]

Akselrud L., Grin Yu.: WinCSD: software package for crystallographic calculations (Ver.4). J. Appl. Crystallogr. 2014. 47: 803. DOI: 10.1107/S1600576714001058

Barchij I.E. Mathematical design of phase equilibria in the Tl2S–Tl2Se–Tl5Se2I quasiternary system. Ukr. Khim. Zh. 2001. 67(11):18. [in Ukrainian]

Barchiy I.E.; Tatzkar A.R.; Fedorchuk A.O., Plucinski K. Phase diagrams of novel Tl4SnSe4-TlSbSe2-Tl2SnSe3 quasi-ternary system following DTA and X-ray diffraction. J. Alloys Comp. 2016. 671: 109. DOI: https:// doi.org/10.1016j.jallcom. 2016.02.078

Tovt V.О., Barchiy I.E., Fedorchuk A.O., Piasecki M., Kityk I.V., Solomon А.М., Pogodin A.I. Interaction in the TlInSe2–Tl4P2Se6 system. Nauch. Vestn. Uzhgorod. Univ. (Ser. Khim.). 2017. 1(37): 55. [in Ukrainian]

Brockner W., Ohse L., Pätzmann U., Eisenmann B., Schäfer H. Kristallstruktur und Schwingungsspektrum des Tetra-Thallium-Hexaselenidohypodiphosphates Tl4P2Se6. Z. Naturforsch. 1985. 40a: 1248.

Banys J., Wondre F.R., Guseinov G. Powder diffraction study of TlGaTe2, TlInTe2 and TlInSe2. Mater. Lett. 1990. 9: 269. DOI: https://doi.org/10.1016/0167-577X(90)90059-U

Man L.I., Parmon V.S., Imamov R.M., Avilov A.S. The electron diffraction determination on the structure of the tetragonal phase Tl5Se3. Kristallografiya. 1980. 25: 1070.

Barchii I.E., Tovt V.A., Piasecki M., Fedorchuk A.A., Solomon A.M., Pogodin A.I. Physicochemical Interaction in the TlInSe2–TlInP2Se6 System. Rus. J. Inorg. Chem. 2018. 63(4): 537. DOI: 10.1134/S0036023618040034.

Batsanov S.S. Experimental basics of structural chemistry. (Moscow: Standards Publishing, 1986). [in Russian]

Ormont B.F. Introduction to the physical chemistry and crystalchemistry of semiconductors. (Moscow: High School, 1982). [in Russian].

Downloads

Download data is not yet available.