nanosystem, Argentum, EDTA, complexonate, bactericidal effect.

How to Cite

BerezhnytskaО., Viktoriia, S., Karyna, S., Kamenska , T., Khrokalo, L., & Trunova, O. (2021). SYNTHESIS AND PROPERTIES OF NEW NANOSYSTEMS OF ARGENTUM. Ukrainian Chemistry Journal, 87(2), 95-106.


AgEDTA complexonate was synthesized, the manner of coordination of the Argentum (I) ion to the functional groups of complexone was determined. It was found that the solid complex precipitates from the solution in the form of a fine powder. It is shown that the size and shape of nanoparticles of Argentum complexonate depend on the solvent-precipitator. A stable dispersed system based on the synthesized complexonate was obtained. The shape and position of the surface plasmon resonance bands confirm the presence of spherical nanoparticles with a size of 15–30 nm in both dispersed systems. Investigations of the biological activity of the powder of AgEDTA has shown that it has a high bactericidal effect against gram-positive bacteria.


1. Lee S.H., Sung J.H. Park, T.H. Nanomaterial-Based Biosensor as an Emerging Tool for Biomedical Applications. Annals of Biomedical Engineering. 2012. 40: 1384–1397.
2. Zhao G., Stevens SE Jr. Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion. Biometals : an International Journal on the Role of Metal Ions in Bio­logy, Biochemistry, and Medicine. 1998. 1: 27–32.
3. Prabhu, S., Poulose, E.K. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. International Nano Letters. 2012. 2: 32.
4. Pizent A, Tariba B, Živković T. Reproductive toxicity of metals in men. Archives of Industrial Hygiene and Toxicology. 2012. 63(1): 35–46.
5. Xu, L., Liu, Y., Chen, Z., Li, W., Liu, Y., Wang, L., Liu, Y.,. Wu, X., Ji, Y., Zhao, Y. Surface-engineered gold nanorods: promi­sing DNA vaccine adjuvant for HIV-1 treatment. Nano Letters. 2012. 12(4): 2003–2012.
6. Pekkanen AM., DeWitt MR., Rylan­der MN. Nanoparticle enhanced optical imaging and phototherapy of cancer. Journal of Biomedical Nanotechnology. 2014. 10(9): 1677–1712.
7. Sosenkova, L.S., Egorova, E.M. The Effect of Particle Size on the Toxic Action of Silver Nanoparticles. Journal of Physics: Conference Series. 2011. 291.
8. Madeira JM, Gibson DL, Kean WF, Kle­geris A. The biological activity of auranofin: implications for novel treatment of diseases. Inflammopharmacology. 2012. 20(6): 297–306.
9. Lee SH, Jun BH. Silver Nanoparticles: Synthesis and Application for Nanomedicine. International journal of molecular sciences. 2019. 20(4): 865.
10. Iravani S., Korbekandi H., Mirmohammadi SV., Zolfaghari B. Synthesis of silver nanoparticles: chemical, physical and biolo­gical methods. Res Pharm Sci. 2014. 9(6): 385–406.
11. Ramanathan S., Gopinath S.C.B. Potentials in synthesizing nanostructured silver particles. Microsystem Technologies. 2017. 23: 4345–4357.
12. Ortega F, Arce VB., Garcia MA. Nanocomposite starch-based films containing silver nanoparticles synthesized with le­mon juice as reducing and stabilizing agent. Carbohydrate polymers. 2021. 252: 117208.
13. Jatoi A.W., Kim I.S., Ni QQ. A comparative study on synthesis of AgNPs on cellulose nanofibers by thermal treatment and DMF for antibacterial activities. Materials science & engineering. C, Materials for biological applications. 2019. 98: 1179–1195.
14. M. Mehdi, M. Akhtar, S. Abro. Electrochemical synthesis of AgNP and mechani­cal performance of AgNP-EG coatings on soft elastomer. Journal of Elastomers & Plastics. 2020. 52(7): 609–619.
15. Kokura S, Handa O, Takagi T, Ishikawa T, Naito Y, Yoshikawa T. Silver nanoparticles as a safe preservative for use in cosmetics. Nanomedicine. 2010. 6(4): 570–574.
16. Roy S., Shankar S., Rhim J. Melanin-mediated synthesis of silver nanoparticle and its use for the preparation of carrageenan-based antibacterial films. Food Hydrocolloids. 2019. 88: 237–246.
17. Shamsutdinova I.R., Derkho M.A. Features of biological action of silver nano­particles in animals. Proceedings of the Orenburg State Agrarian University. 2016 1(57): 202–205.
18. Chekman I S., Priskoka A.O., Babiy V.F., Antonenko O.V., Zahorodniy M. I. Medi­cal use of silver nanoparticles: toxicological Aspect. Modern problems of toxicology. 2010. 4: 10–13.
19. Stanishevskaya I.E., Stoinova A.M., Marakhova A.I., Stanishevskiy Y.M. silver nano­particles: preparation and use for medical purposes. Drug development & registration. 2016. 1: 66–69.
20. Srikar S.K., Giri D.D., Pal D.B., Mishra P.K. and Upadhyay S.N. Green Synthesis of Silver Nanoparticles: A Review. Green and Sustainable Chemistry. 2016. 6: 34–56.
21. Mousavi-Khattat M., Keyhanfar M., Razmjou A. A comparative study of stability, antioxidant, DNA cleavage and antibacterial activities of green and chemically synthesized silver nanoparticles. Artificial cells, nanomedicine, and biotechnology. 2018. 46(3): S1022–S1031.
22. Simakin A., Voronov V., Kirichenko N., Shafeev G. Nanoparticles produced by laser ablation of solids in liquid environment. Applied Physics A. 2004. 79: 1127–1132.
23. Abou El-Nour K.M.M., Eftaiha A., Al-War­than A., Ammar R.A.A. Synthesis and applications of silver nanoparticles. Arabian Journal of Chemistry. 2010. 3: 135–140.
24. Wiley B., Sun Y., Mayers B., Xia Y. Shape-controlled synthesis of metal nanostructures: the case of silver. Chemistry. 2005. 11(2): 454-63.
25. Landage S., Wasif A., Dhuppe P. Synthesis of nanosilver using chemical reduction methods. International Journal of Advanced Research in Engineering and Applied Sciences. 2014. 3: 14–22.
26. Bogacheva, N.V., Tarbeeva K.A., Ogorodova N.Y. Development of a step-by-step procedure for obtaining silver nanoparticles by the citrate method. Proceedings of higher educational institutions. Series «chemistry and chemical technology». 2020. 63(5): 65–69.
27. Semenenko V.A., Nabiullin A.R., Petru­shenko L.G. Obtaining silver nanoparticles and research of their properties. International Scientific and Practical Conference of Students and Young Scientists. Actual problems of modern medicine and pharmacy. 2016. 70: 1122–1125.
28. Kolyada L., Medyanik N., Efimova Yu., Kremneva A. Synthesis and research of silver nanoparticles and the possibility of their use in food packaging. Vestnik MGTU im. G.I. Nosova. 2015. 2: 50.
29. Bychkov A.L., Ryabchikova E.I., Koro­lev K.G., Bukhtoyarov V.A. Obtaining nanosized silver particles stabilized by hydrolysis products of yeast biopolymers. Vestnik VGUIT. 2019. 1: 79.
30. Nikolsky V.M., Pchelkin P.E., Sharov S.V., Knyazeva N.E., Gorelov I.P. Synthesis and application of complexones, derivatives of succinic acid, in industry and agriculture. Success of modern natural science. 2004. 2: 71.
31. Joanne S., Stephen D., David R. Chemical speciation of ethylenediamine-N,N′-disuccinic acid (EDDS) and its metal complexes in solution. Chemical Speciation & Bioavailability. 1999. 11: 3, 85–93.
32. Asemave K. Greener Chelators for Recovery of Metals and Other Applications. Organic & Medicinal Chem IJ. 2018. 6(4): 555–694.
33. Schulz F., Homolka T., Bastús N.G., Pun­tes V., Weller H., Vossmeyer T. Little adjustments significantly improve the Turkevich synthesis of gold nanoparticles. Langmuir : the ACS journal of surfaces and colloids. 2014. 30(35): 10779–10784.
34. Fabrikanos, V. A., Athanassio, S., Li­e­se, K. H. DarstellungStabilerHydrosole von. Gold und Silber durch Reduktion mit Äthylendiamintetraessigsaure. Z. Naturforschg. 1963, 18b: 612–23 617.
35. Dozol H., Mériguet G., Ancian B., Ca­buil V., Xu H., Wang D., Abou-Hassan A. On the Synthesis of Au Nanoparticles Using EDTA as a Reducing Agent. The Journal of Physical Chemistry C. 2013. 117(40): 20958–20966.
36. Dyatlova N.M., TemkinaV.Ya., Popov K.I., Komplexones and complexonates. M.: Khi­miya. 1988: 544. (in russian)
37. Barna A.W., LampekaYa.D. Influence of the chemical nature of polyoxometallate complexes on the flow of redox processes with the formation of nanoparticles of metallic silver. Theoretical and experimental chemistry. 2012. 48(4): 224–229.
38. Shevtsova V.I., Gaiduk P.I. Position of the surface plasmon resonance band in collo­idal solutions of silver and gold nanoparticles. Vestnik BSU. 2012. 1(2): 15–18.
39. Motekaitis, R. J. Martell, A. E., Hayes, D., Frenier, W. W. The Iron (Iii)-Catalyzed Oxidation of Edta in Aqueous-Solution. Canad. J. Chem. 1980. 58: 1999–2005.
40. Bose, R. N.; Keane, C.; Xidis, A.; Reed, J. W.; Li, R. M.; Tu, H.; Hamlet, P. L. Oxidation of Ethylenediaminetetraacetic Acid by Permanganate Ion – a Kinetic-Study. Inorg. Chem. 1991. 30: 2638–2642.
41. Khan Z.; Raju, K.-U. D. Kinetics of Oxidation of Ethylenediaminetetraacetic Acid (EDTA) by Chromium (VI) in the Presence of Perchloric Acid. Indian J. Chem. Sect. B. 2004. 43(16): 149–156.


Download data is not yet available.