Phase equilibrium, Lattice parameter, solid solutions

How to Cite

Kornienko, O., Bykov , O., Sameliuk А., & Andrievskaya , O. (2021). ISOTHERMAL SECTION STRUCTURE THE ZrO2-La2O3-Gd2O3 SYSTEM AT 1500 °С. Ukrainian Chemistry Journal, 87(1), 23-40.


Using the methods of physicochemical analysis (XRD, petrography, scanning electron microscopy analyses) phase equilibria were firstly investigated in the ternary system ZrO2–La2O3–Gd2O3 system at 1500 ºС. It was established that in the system there exist fields of solid solutions based on hexagonal (A) modification of La2O3 and cubic with fluorite-type structure (F) and tetragonal (Т) modification ZrО2 , cubic (С) and monoclinic (M) modification Gd2O3 and ordered intermediate phase with pyrochlore-type structure lanthanum zirconate La2Zr2O7 (Py). No new phases were found. The refined lattice parameters of the unit cells for solid solutions for the systems were determined.

In the zirconia-rich corner, the solid solutions based on tetragonal modification of ZrO2 are formed. The phase field T-ZrO2 is narrow and elongated (0–18 mol% CeO2) along the ZrO2–CeO2 side of the binary system. The solubility of La2O3 in the T-ZrO2 is low and amounts to ~ 0.5 mol%, as evidenced by XRD analysis results. It is worth noting that the solid solutions based on tetragonal modification of zirconia cannot be quenched from high temperatures due to low stability of T-ZrO2 under cooling with furnace conditions. The diffraction patterns recorded at room temperatures included the peaks of monoclinic phase M-ZrO2.

The homogeneity field of solid solution based on A-La2O3 extends to 31 mol% Gd2O3 and 12 mol% ZrO2 in the corresponding binary systems and locates near the composition 6,7 mol % ZrO2–90 mol% La2O3–3.3 mol% Gd2O3 on the section La2O3–(67 mol % ZrO2–33 mol % Gd2O3). It should be noted that the samples with a higher lanthanum oxide content after annealing and cooling rapidly absorb water in humid air and become hydrated. Hence, according to XRD, the hexagonal A-La(OH)3 modification forms instead of the hexagonal A-La2O3 phase. The lattice parameters for A-La(OH)3 phase vary from а = 0.6513 nm, c = 0.3847 nm the sample containing 3.35 mol % ZrО2–95 mol % La2O3–1.65 mol % Gd2O3 to а = 0.6508 nm, c = 0.3847 nm in the two-phase sample (Py+А ) containing 6.7 mol % ZrО2–90 mol % La2O3–3.3 mol % Gd2O3 and to а = 0.6477 nm, c = 0.3725 nm in the three-phase sample (Py+F+А) containing 40.2 mol % ZrО2–40 mol % La2O3–19.8 mol % Gd2O3

The isothermal section of the ZrO2–La2O3–Gd2O3 system at 1500°C contains four three-phase regions (F+Py+A, F+B+A, F+C+B, T+F+Py) and ten two-phase regions (Py+A, A+F, A+B, F+B, B+C, C+F, F+Py, Py+T, T+F, Py+F).


1. Vorozhtcov V.A., Stolyarova V. L., Lopa­tin S. I., Simonenko E. P., Simonenko N. P., Sakharov K. A., Sevastyanov V. G., Kuz­netsov N. T. Vaporization and thermodynamic properties of lanthanum hafnate // J. Alloys Compd. 2018, 735: 2348.
2. Chang-Sup K., Sung-Min L., Yoon-Suk O., Hyung-Tae K., Byung-Koog J. K. Seongwon Preparation of Suspension in La2O3–Gd2O3–ZrO2 System via Planetary Mill and Characteristics of (La1-xGdx)2Zr2O7 Coatings Fabricated via Suspension Plasma Spray // J. of Kor. Powd. Metall. Instit. 2013, 20: 453
3. Chang-Sup K., Sung-Min L., Yoon-Suk O., Hyung-Tae K., Byung-Koog J., Seongwon K. Phase Evolution and Thermal Conductivities of (La1-xGdx)2Zr2O7 Oxides for Thermal Barrier Coatings // J. of Kor. Pow. Metall. Instit. 2012, 19: 429.
4. Chang-Sup K., Sung-Min L., Yoon-Suk O., Hyung-Tae K., J. Byung-Koog, Seongwon K. Structure and Thermal Conductivity of Thermal Barrier Coatings in Lanthanum/Gadolinium Zirconate System Fabricated via Suspension Plasma Spray // J. of the Kor. Inst. of Surf. Engin. 2014, 47: 316.
5. Andrievskaya E. R., Gerasimyuk G. I., Kor­nienko O. A., Samelyuk A. V., Lopato L. M., Red’ko V. P. Phase equilibria in the system HfO2-ZrO2-CeO2 at 1500 °C // Powd. Metall. and Met. Ceram. 2006, 45: 448.
6. Korniienko O.A., Bykov, A.I. Andrievskaya E.R. Phase Equilibria in the ZrO2–La2O3–Sm2O3 System at 1100°C // Powder Metall Met Ceram. 2020, 59: 224.
7. Yoshimura M.. Xiao-Zheng R. Various solid solutions in the systems Y2O3–R2O3 (R – La, Nd, and Sm) at high temperature // J. of Mater. Sci. Lett. 1997, 16: 1961.
8. Zinkevich M. Thermodynamics of rare earth sesquioxides // Progress Mater. Sci. 2007, 52: 597.
9. Glushkova V. B. Polymorphism of rare-earth oxides, L. Nauka, 1967, 134.
10. Andrievskaya E. R. Phase equilibria in the refractory oxide systems of zirconia, hafnia and yttria with rare-earth oxides // J. of the European Ceram. Soc. 2008, 28: 2363.
11. Traverse J. P. Etude du Polymorphisme des Sesquioxydes de Terres Rares: These. Grenoble, 1971, 150.
12. Lopato L. M., Shevchenko A. V., Kuschev­skiy A. K., Tresvyatskiy S. G. Polimorfnyie prevrascheniya okislov RZE pri vyisokih temperaturah // Izv. AN SSSR. Neorgan. Material. 1974 , 10, № 8: 1481.
13. Shevchenko A. V, Lopato L. M. TA method application to the highest refractory oxide systems investigation // Thermochim Acta. 1985, 93: 537.
14. Ahrens L. H. Use of ionization potentials I ionic radii of the elements // Geochim. et Cosmochim. Acta. 1952, 2: 155.
15. Shannon R. D., Prewitt C. T. Effective ionic radii in oxides and fluorides / R. D. Shannon, // Acta Cryst. B. 1969. 25: 925.
16. Bharathy M., Fox A. H., Mugavero S. J. Crystal growth of inter-lanthanide LaLn′O3 (Ln′ = Y, Ho–Lu) perovskites from hydroxide fluxes // Solid State Sci. 2009, 11: 651.
17. Toropov S. A. Phase Diagrams of the Refractory Oxide Systems, Binary systems. chapter 3, L, Nauka, 1987.
18. Zhang Y. Thermodynamic Thermodyna­mic Properties of Rare Earth Sesqui­oxide // Supervisor: Prof In-ho Jung McGill University, Montreal, QC, Canada, Mont­real, 2016.
19. Coutures J., Rouanet A., Verges R., Foex M. Etude a haute temperature des systems formes par le sesquioxyde de lanthane et les sesquioxydes de lanthanides. I. Diagrammes de phases (1400 oC < T < T Liquide) // J. Solid State Chem.1976, 17:171.
20. Hory´n R., Bukowska E., Sikora A. Phase relations in La2O3–Gd2O3–CuO system at 950 ◦C // J. of All. and Comp. 2006, 416: 209.
21. Schneider S. J., Roth R. S. Phase Equilibria in Systems Involving the Rare-Earth Oxides. Part II. Solid State Reactions in Trivalent Rare-Earth Oxide Systems // J. of research of the Nat. Bureau of Standards-A. Phys. and Chem. 1960, 4: 317.
22. Andrievskaya E.R., Kornienko О.А., By­kov О.І. VzaEmodIya oksidIv lantanu ta gadolInIyu pri temperaturI 1100 °С // Sovremennyie problemyi fizicheskogo materialovedeniya, IPM NAN Ukrain. 2017, 26: 23.
23. Rouanet A. Contribution a l’etude des systemes zirconia – oxydes des lanthanides au voisinage de la fusion: Мemoire de these // Rev. Intern. Hautes Temper. et Refract. 1971, 8, № 2: 161.
24. Wang Ch., Zinkevich M., Fabrichnaya O., Aldinger F. Experimental investigation and thermodynamic modeling in the ZrO2-GdO1.5 system // In Calphad XXXIII Program and Abstracts. 2004: 88.
25. Grover V., Tyagi A. K. Phase relations studies in the CeO2-Gd2O3-ZrO2 system // Sol. State Chem. 2004, 177: 4197.
26. Wang Ch., Zinkevich M., Aldinger F. Phase diagrams and thermodynamics of rare-earth-doped zirconia ceramics // Pure Appl. Chem. 2007, 79. №. 10: 1731.
27. Negro A. Amato I. An investigation of the zirconia-gadolinia system // J. of The Less-Common Met. 1972, 2. №1: 81.
28. Van Dijk T., De Vries K. J., Burggaf F.J. Electrical conductivity of fluorite and pyrochlore LnxZr1-xO2-x/2 (Ln = Gd, Nd) Solid Solutions // Phys. Stat. Sol. – 1980, 58 (a): 115.
29. Feighery A., Zheng J. Phase Relations at 1500°C in the Ternary System ZrO2–Gd2O3–TiO2 / Feigher y A. J., J. T. S. Irvine, C. // J. of Sol. Stat. Chem. 2001, 160: 302.
30. Andrievskaya Е. R., Kornienko О. А. Vza­imodeystvie oksida gadoliniya s oksidom tsirkoniya pri temperature 1500 °С // Sbornik nauchnyih trudov OAO UkrNII ogneuporov imeni A.S. Berezhnogo Har­kov, 2009, 109: 117.
31. Andrievskaya Е. R., Lopato L. М. Approksimatsiya poverhnosti likvidusa diagrammyi sostoyaniya sistemyi ZrO2-Y2O3-La2O3 privedennyimi polinomami // Porosh­kovaya metallurgiya. 2000, 9/10: 28.
32. Bastide B., Odier P., Coutures J.P Phase equilibrium and martensitic transformation in lanthana – doped zirconia // J. Am. Ceram. Soc.1988, 71. № 6: 449.
33. Andrievskaya E., Kornienko O., Bykov A. Phase Equilibria in the ZrO2–La2O3–Gd2O3 System at 1600 °C // Powder Metall Met Ceram.2020


Download data is not yet available.