ELECTROCATALYSIS OF THE OXYGEN REACTION ON THE MULTICOMPONENT OXIDES OF TRANSITION METALS
№2

Keywords

electrocatalysis of oxygen reaction, chemisorption of oxygen, oxides of transition metals, oxide electrocatalysts.

How to Cite

Maltseva, T., & Kublanovsky , V. (2021). ELECTROCATALYSIS OF THE OXYGEN REACTION ON THE MULTICOMPONENT OXIDES OF TRANSITION METALS . Ukrainian Chemistry Journal, 86(12), 103-123. https://doi.org/10.33609/2708-129X.86.12.2020.103-123

Abstract

The review presents the current state of research on oxides of transition metals as electrocatalysts for the both reactions of oxygen reduction and evolution, which are of key importance ones for electrochemical devices of alternative energy: metal-air rechargeable batteries and fuel cells with an oxygen electrode. The review includes the consideration of the thermodynamic, electronic and adsorption conditions for activation of the molecular oxygen by oxide surface, as well as the advantages of the oxide surfaces as catalysts in the alkaline electrolytes. The influence of the chemical composition and structural features of oxides of transition elements on the adsorption and chemisorption of water and oxygen, the formation of ionic forms at adsorption and the main factors, which influence on transfer of electrons, protons and oxygen, are considered. Synthesis of double and other multicomponent oxides and the usage of cationic doping expands the possibilities of forming the necessary properties of the electrocatalysts: porosity, thickness of hydrated layers, electronic and ionic conductivity, proton and electron-donor (acceptor) properties in a optimal combination. The oxide should have a metal with variable valence, and even better if there are two ones. Such oxides can be various structures based on Co2O3, MnO2, Ni2O3, Mn3O4, Fe2O3, and others. A qualitative leap in improving the performance of catalysts for electrode reactions with oxygen was made possible by the synthesis of nanoparticles, as well as nanocomposites with metallic and carbon materials. The some characteristics of the electroca­talytic activity of promising oxide electrocata­lysts, mainly, multicomponent ones, as well as the results of studies of oxide composites with carbon nanomaterials, are presented. Several of the most well-known oxide structures (spinel, perovskite, pyrochlor) are currently being studied as the most promising matrices for the efficient transfer of charge, oxygen, and metal ions. All of them are multicomponent. The most active non-platinum bifunctional catalysts for oxygen reactions concluded to be cobaltites with spinel structure. Nanocomposites based on cobalt and cobalt-manganese spinel are the most promising materials for use in alkaline rechargeable batteries, both in terms of cost and in terms of electrocatalytic activity as well as in terms of corrosion resistance.

https://doi.org/10.33609/2708-129X.86.12.2020.103-123
№2

References

Wang Y.J., Fang B., Zhang, D. et al. A Review of Carbon-Composited Materials as Air-Electrode Bifunctional Electrocatalysts for Metal–Air Batteries // Electrochem. Energ. Rev. 2018. 1: 1.

Kraytsberg A.; Ein-Eli Y. Review on Li–air batteries – Opportunities, limitations and perspective // J. Power Sources. 2011. 196: 886.

Scrosati B., Garche J. Lithium batteries: Status, prospects and future // Journal of Power Sources. 2010. 195(9): 2419.

Zheng J.P., Liang R.Y., Hendrickson M., et al. Theoretical Energy Density of Li–Air Batteries // J. Electrochem. Soc. 2008. 155: A432.

Tarasevich M. R., Andreev V. N., Korchagin O. V., and Tripachev O. V. Lithium–Oxygen (Air) Batteries (State-of-the-Art and Perspectives) // Protection of Metals and Physical Chemistry of Surfaces. 2017. 53(1): 1.

Song C., Zhang J. Electrocatalytic oxygen reduction reaction. In PEM fuel cell electrocatalysts and catalyst layers. Springer, London. 2008.: 89.

Park S, Shao Y, Liu J,Wang Y. Oxygen electrocatalysts for water electrolyzers and reversible fuel cells: status and perspective // Energy Environ. Sci. 2012. 5: 9331.

Tarasevich M.R., Davydova E.S. Nonplati­numcathodic catalysts for fuel cells with alkaline electrolyte (review) // Electroche­mistry. 2016.52(3): 227.

Tarasevich M.R., Korchagin O.V. Electrocatalysis and pH. // // Electrochemistry. 2013.49: 676

Problems of electrocatalysis. M .: Science. 1980 .: 272 p.

Misyuk E.G., Davtyan O.K., Sofronov A.N., Uminsky M.V. Research of electrode semiconductor catalysts // Electrochemistry. 1966.2(3): 311.

Kinetics and catalysis of chemical and elect­rode processes. Davtyan O.K. / Resp. ed. N. M. Beylerian. – Er.: Publishing house of the Academy of Sciences of the Armenian SSR. 1984.: 385 p.

Misyuk E.G., Davtyan O.K. Catalitic activity and electrical conductivity of oxide semiconductor catalysts of an oxygen electrode; in the book: Fuel cells. Publishing house “Science”. Moscow: 1968.: 375 p.

Minaev B.F. Electronic mechanisms of activation of molecular oxygen // Advances in chemistry. 2007. 76 (11): 1059.

Minaev B.F. Spin-catalysis in the processes of photo- and bioactivation of molecular oxy­gen // Ukr. Biochem. Journai. 2020.74 (3): 11.

Wang B. Recent developments of non-platinum catalysts for oxygen reduction reaction // Journal of Power Sources. 2005. 152: 1.

Nørskov J. K., Rossmeisl J., Logadottir A., Lindqvist L., Kitchin J. R., Bligaard T., Jónsson H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode // J. Phys. Chem. B. 2004. 108(7886).

Печенюк С. И.. Сорбция анионов на окси­гидроксидах металлов (обзор) // Сорбционные и хроматографические процессы. 2008. 8(3): 380.

Doyle A. D., Montoya J. H., Vojvodic A. Improving Oxygen Electrochemistry through Nanoscopic Confinement // ChemCatChem. 2015. 7(5): 738.

Hamdani M., Singh R.N., Chartier P. Co3O4 and Co-Based Spinel Oxides Bifunctional Oxygen Electrodes // Int. J. Electrochem. Sci.5: 556.

Han Ch., Li W., Liu H.-K., Dou Sh., Wang J. Design strategies for developing non-precious metal based bi-functional catalysts for alkaline electrolyte based zinc–air batteries // Materials Horizons. 2019. 6: 1812.

Goswami Ch., Hazarika K. K., Bharali P. Transition metal oxide nanocatalysts for oxygen reduction reaction // Materials Science for Energy Technologies. 2018. 1(2): 117.

Huang Z.‐F., Wang J., Peng Y., Jung C.‐Y., Fisher A., Wang X. Design of Efficient Bifunctional Oxygen Reduction/Evolution Electrocatalyst: Recent Advances and Perspectives // Adv. Energy Mater. 2017. 7(23): 1700544.

Wolfram T., Hurst R., and Morin F. J. Cluster surface states for TiO2, SrTiO3, and BaTiO3 // Phys. Rev. B. 1977. 15: 1151.

Al-Abadleh H. A., Grassian V. H. Oxides as environmental interfaces // Surface Science Reports. 2003. 52: 63.

Kim M., Jooheon H., Kim Ju. Single cystalline Bi2Ru2O7pyrochlore oxide nanoparticles as efficient bifunctional oxygen electrocatalyst for hybrid Na-air batteries // Chemical Engineering Journal. 2019. 358 (15): 11.

Subramanian M.A., Aravamudan G., Subba Rao G.V. Oxide Pyrochlores – A Review // Prog. Sol. State. Chem. 1983. 15: 55.

Maltseva T.V., Kudelko E.O., Belyakov V.N. Ionic conductivity of oxyhydrates MxAl1-xOy∙ nH2O, where M is Zr, /S/n and Ti // Questions of chemistry and chemical technology. 2011. 4 (2): 50.

Maltseva T.V.,Pal’chik A. V., Kudelko E. O., Vasilyuk S. L., Kazdobin K. A. Impact of Surface Properties of Hydrated Compound Based on ZrO2 on the Value of Ionic Conduction // J. of Water Chemistry and Technology. 2015. 37(1): 18.

Tichit D., Das N., Coq B., Durand R. Preparation of Zr-Containing Layered Double Hydroxides and Characterization of the Acido-Basic Properties of Their Mixed Oxides // Chem. Mater. 2002. 14(4): 1530.

Rossmeisl J., Logadottir A., Norskov J.K. Electrolysis of water on (oxidized) metal surfaces // Chem. Phys. 2005. 319: 178.

Chen H., Wang J., Pan T., Zhao Y., Zhang J.Q., Cao C.N. The structure and electrochemical performance of spherical Al-substituted α-Ni(OH)2 for alkaline rechargeable batteries // J. Power Sources. 2005. 143: 243.

Suntivich J., Gasteiger H.A., Yabuuchi, N., et al. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. // Nat. Chem. 2011. 3: 647.

Suntivich J., May K.J., Gasteiger H.A., et al. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. // Science. 2011. 334: 1383.

Gupta Sh., Kellogg W., Xu H., Liu X., Cho J., Wu G. Bifunctional Perovskite Oxide Catalysts for Oxygen Reduction and Evolution in Alkaline Media // Chem Asian J. 2016. 11(1): 10.

Hardin W.G., Mefford J.T., Slanac D.A., Patel B.B., Wang X., Dai S., Zhao X., Ruoff R.S., Johnston K.P., Stevenson K.J. Tuning the Electrocatalytic Activity of Perovskites through Active Site Variation and Support Interactions // Chem. Mater. 2014. 26(11): 3368.

Yan Z., Sun H., Chen X. et al. Rapid low-temperature synthesis of perovskite/carbon nanocomposites as superior electrocatalysts for oxygen reduction in Zn-air batteries // Nano Res. 2018. 11: 3282.

Trunov A.M., Reznikov G.L., Domnikov A.A. et. al. - in the book: Second All-Union meeting on electrocatalysis: Abstracts. report M .: Science. 1978, p. 43.

Shalaginov V.V., Belova I.D., Roginskaya Yu. E., Shub D.M. - in the book: Second All-Union meeting n electrocatalysis: Abstracts. report M.: Science. 1978, p. 38.

PirskiyYu.K., Kublanovskiy V.S. Potaskalov V.A., Andriyko A.A. Heteropolynuclear complexes of cobalt (III) - nikel (II) with triethanolamine as precursors for the preparation of oxide electrocatalysts for oxygen reduction. NASU Rep. (mathematics, natural science, technical sciences). 2006.11: 152.

Park M. S., Kim J., Kim K.J., et al. Porous nanoarchitectures of spinel-type transition metal oxides for electrochemical energy storage systems. // Phys. Chem. Chem. Phys. 2015. 17: 30963.

Shiju N.R., Guliants V. Recent developments in catalysis using nanostructured materials. // Appl. Catal. A. 2009. 356: 1.

Debart A., Paterson A.J., Bao J., Bruce P.G. γ-MnO2 Nanowires: A Catalyst for the O2 Electrode in Rechargeable Lithium Batte­ries. // AngewandteChemie. 2008. 120(24): 4597.

Mao L. Q., Zhang D., Sotomura T., Nakatsu K., Koshiba N., Ohsaka T. Mechanistic Study of the Reduction of Oxygen in Air Electrode with Manganese Oxides as Electro­catalysts. // Electrochim. Acta. 2003. 48(8): 1015.

Gorlin Y., Jaramillo T.F. A Bifunctional Nonprecious Metal Catalyst for Oxygen Reduction and Water Oxidation. // J. Amer. Chem. Soc. 2010. 132(39): 13613.

AnnaRyabova. Электрокатализ реакций восстановления O2 и H2O2 на оксидах марганца. Theoretical and/or physical chemistry. Université de Strasbourg. – 2018. – Rus­sian. ⟨NNT: 2018STRAF011⟩.

Sokolsky G. V., Ivanov S. V., Boldyrev E. I. et al. Li+-Doping-Induced Changes of Phase Composition in Electrodeposited Manganese (IV) Oxide Materials // Solid State Phenom. 2015. 230: 85.

Gorlin Y., Lassalle-Kaiser B., Benck J., Gui S., Webb S., Jachandre V., Jano J. Jaramillo J. In Situ X ray Absorption Spectroscopy Investigation of a Bifunctional Manganese Oxide Catalyst with High Activity for Electroche­mical Water Oxidation and Oxygen Reduction. // J. Amer. Chem. Soc. 2013. 135(23): 8525.

Doyle R. L.; Godwin I. J.; Brandon M. P.; Lyons M. E. G. Redox and electrochemical water splitting catalytic properties of hydrated metal oxide modified electrodes // Phys. Chem. Chem. Phys. 2013. 15: 13737.

Li C., Han X., Cheng F., Hu Y., Chen C., Chen J., Phase and composition controllable synthesis of cobalt manganese spinel nanoparticles towards efficient oxygen electrocatalysis. // Nat. Commun. 2015. 6: 7345.

Jung J.‐I., Risch M., Park S., Kim M. G., Nam G., Jeong H.‐Y., Shao‐Horn Y., Cho J. Optimizing nanoparticle perovskite for bifunctional oxygen electrocatalysis // Energy Environ. Sci. 2016. 9: 176.

Guo C., Zheng Y., Ran J., Xie F., Jaroniec M., Qiao S. Z. Engineering High-Energy Interfacial Structures for High-Performance Oxygen-Involving Electrocatalysis //Angew. Chem. Int. Ed. 2017. 56(29): 8539.

Gupta S., Qiao L., Zhao S., Xu H., Lin Y., Devaguptapu S. V., Wang X., Swihart M. T., Wu G. Highly Active and Stable Graphene Tubes Decorated with FeCoNi Alloy Nanoparticles via a Template‐Free Graphitization for Bifunctional Oxygen Reduction and Evolution // Adv. Energy Mater. 2016. 6: 1601198.

Yi. Wu, Wang T., Zhang Yi., Xin S., He X., Zhang D., Shui J. Electrocatalytic performances of g-C3N4-LaNiO3 composite as bi-functional catalysts for lithium-oxygen batteries // Sci. Rep. 2016. 6: 24314.

Koninck M., Marsan B. MnxCu1−xCo2O4 used as bifunctional electrocatalyst in alkaline medium // ElectrochimicaActa. 2008 53(23): 7012.

Xu Y., Tsou A., Fu Y., et al. Carbon-coated perovskite BaMnO3 porous nano-rods with enhanced electrocatalytic properties for oxy­gen reduction and oxygen evolution // Electrochim. Acta. 2015. 174: 551.

Nishio K., Molla S., Okugaki T., etal. Effectsofcarbononoxygenreductionandevolu¬tionreactionsofgas-diffusionairelectrodesbasedonperovskite-typeoxides // J. PowerSources. – 2015. – 298: 236.

Bersirova O., Kublanovsky V., Cesiulis H. Electrochemical formation of functional silver coatings: Nanostructural peculiarities // ECS Transactions. 2013. 50(52):155.

Cesiulis H., Sinkevičiūtė J, Bersirova О., Ponthiaux P. Tribocorrosion testing of self-passivating molybdenum and tungsten alloys containing cobalt and iron // – BALTTRIB'2009: Int. Conf. TB, Proceedings, 2009: 253.

Downloads

Download data is not yet available.