membranes, anodized aluminum oxide, porous films, nanopores, two-stage anodizing.

How to Cite

Rozhdestvenska, L., Kudelko, K., Ogenko, V., & Chang, M. (2021). MEMBRANE MATERIALS BASED ON POROUS ANODIC ALUMINIUM OXIDE. Ukrainian Chemistry Journal, 86(12), 67-102.


Anodized aluminum oxide (AOA) is applied in many technological areas such as formation of decorative or anticorrosive coating, hydrophobic and hydrophilic surfaces, development of functional micro- and nanomaterials. Due to unique properties of porous structure (most direct, regular and through pores with size in a narrow range) AOA films can be used for membrane separation. The morphological features of such films mainly depend on synthesis conditions. This review consists of the models of pore formation on the aluminum surface and the correlation parameters of films with anodizing conditions. Particular attention is paid to the influence of synthesis factors (electrolyte composition, voltage, temperature conditions, etc) on the porous structure of AOA and the film thickness that determines the mechanical strength of membranes. The optimal voltage values for the porous structure arraingment of anodized aluminum oxide were indicated for each electrolyte. It is noted formation of cylindrical shaped pores with controllable pore diameters, periodicity and density distribution can be produced during two-stage anodizing. The pre-treatment of the metal surface and stage of separation of the formed film from its surface are also considered. Modern research are mainly aimed to synthesis of porous AOA membranes in new anodizing electrolytes and determining pore formation factors on the aluminum surface.  The new anodizing conditions in most popular electrolytes (oxalic, sulfuric, phosphoric acids) for obtaining of porous AOA with the required morphological features is also under investigation. Such conditions include, for example, a lower voltage or higher temperature in case for a particular electrolyte. To avoid of local heating the electrolytes with additional components, for example, organic additives is also studied. Some practical aspects of AOA membrane utilization obtained under certain conditions are considered.


Catapano G., Vienken J.Biomedical App­li­cations of Membranes. Advanced Membrane Technology and Appl. 2008. 489. ISBN: 978-0-471-73167-2.

Mares J., Tuma Z., Moravec J. at al. Pavlina R., Matejovic, M. Proteins Adsorbed to a PolysulfoneHemodialysis Membrane under Heparin and Citrate Anticoagulation Regimens. Artificial Organs., 2019. 43. (11): 1092.

Myronchuk V., Zmievskii Yu., Dzyazko Yu., Rozhdestvenska L., Zakharov V. Whey desalination using polymer and inorganic membranes: operation conditions. ActaPeriodica Technol. 2018. 49:103.

Dzyazko Yu., Rozhdestveskaya L., Zmi­evskii Yu., Zakharov V., Myronchuk V. Composite inorganic anion exchange membrane for electrodialytic desalination of milky whey. Mat. Today: Proceedings. 2019. 6 (2): 250.

Gupta, V., Anandkumar J. Рrotein separation using fly-ash microfiltration ceramic membrane. Inter. J. of Biotechnol., Bioinform. and Biomed. 2018. 3 (2): 17.

Zhou C., Segal-Peretz T., Oruc M. E., Suh H. S., Wu G., Nealey P. F. Fabrication of nanoporous alumina ultrafiltration membrane with tunable pore size using block copolymer templates. Adv. Functional Mat. 2017. 27 (34): 1701756.

TerBeek O., Pavlenko D., Suck M., Helfrich S., Bolhuis-Versteeg L., Snisarenko D., Stamatialis D. New membranes based on polyethersulfone – SlipSkinTM polymer blends with low fouling and high blood compatibility. Sep. and Purif. Technol. 2019. 225: 60.

Castro-Muñoz R. The role of new inorganic materials in composite membranes for water disinfection. Membranes. 2020. 10: 101.

Zmievskii Yu,, Rozhdestvenska L., Dzyazko Yu., Kornienko L., Myronchuk V., Bildukevich A., Ukrainetz A. Organic-inorganic materials for baromembrane separation. Springer Proc. Phys. 2017. 195 : 675.

Zmievskii Yu., Dzyazko Yu., Myronchuk V., Rozhdestvenskaya L., Vilenskii A., Kornienko L. Fouling of polymer and organic-inorganic membranes during filtration of corn distillery. Ukr. Food J. 2016. 5 (4). Р.739.

Dzyazko Y. S., Rozhdestvenska L. M., Vasilyuk S. L., Kudelko K. O., Belyakov V. N. Composite Membranes Containing Nanoparticles of Inorganic Ion Exchangersь for Electrodialytic Desalination of Glycerol. Nanoscale research letters. 2017. 12 (1): 438.

Dzyazko Yu. S., Rozhdestvenskaya L.M., Zmievskii Yu. G., Vilenskii A.I., Myronchuk V.G., Kornienko L.V., Vasilyuk S.L., Tsyba N.N. Organic-inorganic materials containing nanoparticles of zirconium hydrophosphate for baromembrane separation. Nanoscale Res. Letters. 2015. 10:64.

Myronchuk V.G., DzyazkoYu.S., ZmievskiiYu.G., Ukrainets A.I., Bildukevich A.V., Kornienko L.V., Rozhdestvenskaya L.M., Palchik A.V. Organic-inorganic membranes for filtration of corn distillery. ActaPeriodica Technol. 2016. 47 :153.

DzyazkoYu.S., Volfkovich Yu. M., Sosenkin V. E, Nikolskaya N.F., GomzaYu.P.Composite inorganic membranes containing nanoparticles of hydrated zirconium dioxide for electrodialytic separation. Nanoscale Res. Letters. 2014. 9 (1): 271.

Masuda H.; Yada K.; Osaka A. Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution. Jpn. J. Appl. Phys. 1998. 37. 1340.

Napolskii, K.S., Roslyakov, I.V., Eliseev, A.A.,Petukhov, D.I., Lukashin, A.V., Chen, S.F., Liu, C.P., Tsirlina, G.A. Tuning the microstructure and functional properties of metal nanowire arrays via deposition potential. Electrochim. Acta. 2011. 56 (5): 2378.

Sulka G.D. Highly ordered anodic porous alumina formation by self-organized anodizing in Nanostructured materials in electrochemistry. (WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 2008, P. 1–116).

Lee W. Park S.-J. Porous anodic aluminum oxide: anodization and templated synthesis of functional nanostructures. Chem. Rev. 2014. 114 (15): 7487.

Petukhov, D.I., Berekchiian, M.V., Pyat­kov, E.S., Solntsev, K.A., and Eliseev, A.A., Experimental and theoretical study of enhanced vapor transport through nanochannels of anodic alumina membranes in capillary condensation regime, J. Phys. Chem. C. 2016. 120 (20): 10982.

Lee, K.P. and Mattia, D., Monolithic nanoporous alumina membranes for ultrafiltration applications: characterization, selectivity-permeability analysis and fouling studies. J. Membr. Sci. 2013. 435: 52.

Huang Z., Zhang W., Yu J., Gao D. Nanoporous alumina membranes for enhancing hemodialysis. Journal of Medical Devices. 2007. 1(1): 79.

Kasi A.K., Kas, J.K., Hasan M., Afzulpurkar N., Pratontep S., Porntheeraphat S., Pankiew A. Fabrication of low cost anodic aluminum oxide (AAO) tubular membrane and their application for hemodialysis. Advanced Materials Research. 2012. 550: 2040.

Osmanbeyoglu H.U., Hur T.B., Kim H.K. Thin alumina nanoporous membranes for similar size biomolecule separation. Journal of Membrane Science. 2009. 343(1):1.

Jang B., Chen X.Z., Siegfried R., Moreno J.M.M., Özkale B., Nielsch K., Pané S. Silicon-supported aluminum oxide membranes with ultrahigh aspect ratio nanopores. RSC Advances. 2015. 5 (114): 94283.

Buldakov D.A, Petukhov D.I., Eliseev A.A. Anodic Alumina membrane for separation processes in liquid media // Procedia Engineering. 2012. 44: 1706. doi: 10.1016/j.proeng.2012.08.916

Ullah A., KasiA.Kh., KasiJ.Kh., Bokhari M. Fabrication of mechanically stable AAO membrane with improved fluid permeation properties. Microelectronic Engineering. 2018. 188,5: 95. doi:10.1016/j.mee.2017.11.019.

Pourbaix M.. Atlas of electrochemical equilibria in aqueous solutions: (PergamonPress. 1966).

Diggle J.W., Downie T.C., Goulding C.W. Anodic oxide films on aluminum. Chemical Reviews. 1969. 69: 365.

Lisyuk L.S., Ogenko S.V., Volkov S.V., Dzya­zkoYu.S. Impedance spectra of oxidized aluminum electrochemically modified with nickel nanoparticles. Visnik NTU KhPI. 2008.16: 65. [in Russian].

Bockris J.O.M., White R.E., Conway B.E. Modern aspects of electrochemistry (Springel 1989).

Thompson G.; Wood G.C. Anodic films on aluminum, In J. C. Scully, Ed., Treatise on Material Science and Technology. (Academic Press, New York, 1983).

Van der Linden B.; Terryn H.; Vereecken . Investigation of anodic aluminium oxide layers by electrochemical impedance spectroscopy. J. Appl. Electrochem. 1990. 20: 798.

Wehrspohn R.B.; Li A.P.; Nielsch K.; Highly ordered alumina films: pore growth and applications. Oxide Films in The Electrochemical Society Proceeding Series. (Pennington, NJ: Marcel Dekker,. 2000).

O’Sullivan J.P.; Wood G.C. Morphology and mechanism of formation of porous anodic films on aluminium // Proc. R. Soc. London, Ser. A. 1970. 317: 511.

P.A.M.E.A.J.BardEncyclopedia of electrochemistry of the elements (Marcel Dekker: New York and Basel, 1973).

Ono S., Ichinos, H., Kawaguci, T., Masuko N. The observation of anodic oxide films on aluminum by high resolution electron microscopCorros. Sci. 1990. 31: 249.

Parkhutik V.P., Belov V.T., Chernyckh M.A. Study of aluminium anodization in sulphuric and chromic acid solutions—II. Oxide morphology and structure. Electrochim. Acta. 1990. 35(6): 961.

Brichka A.V., Prikhodko G.P., Brichka S.Y., Oranska O.I.,. Ogenko V.M. Thermal properties of alumina membranes. Chemistry, physics and surface technology. 2003. 9: 145.

Keller F.; Hunter M.S.; Robinson D.L. Structural Features of Oxide Coatings on Aluminium. J. Electrochem. Soc. 1953. 100: 411.

Raja K.S., Misra M., Paramguru R. Formation of Self-Ordered Nano-Tubular Structure of Anodic Oxide Layer on Titanium. ElectrochemActa. 2005. 15:154.

.Hoar T.P, Mott N.F. A mechanism for the formation of porous anodic oxide films on aluminium. J.Phys.Chem.Solids 9. 1959. 9(2): 97.

Hunter M.S., Fowle P. Factors Affecting the Formation of Anodic Oxide Coatings. J.Electrochem.Soc. 1954. 101: 514.

Bogoyavlensky A.F. The Mechanism of Formation of Anodic Oxide Film on Aluminum (Moscow: Mashinostroenie, 1964). [in Russian].

Oh J., Thompson C.V. The role of electric field in pore formation during aluminum anodization. Elecrtochem. Acta. 2011. 56 (11): 4044.

Garsia-Vergara S.J., Skeldon P., Thompson G.E., Habazaki H. Formation of porous anodic alumina in alkaline borate electrolyte. Thin Solid Films. 2007. 515(3): 5418.

Garsia-Vergara S.J., Skeldon P., Thompson G.E., Habazaki H. A tracer investigation of chromic acid anodizing of aluminium. Surf. Interface Anal. 2007. 39(11): 860.

Lee W., Ji R., Gösele U., Nielsch K. Fast fabrication of long-range ordered porous alumina membranes by hard anodization. Nature Mat. 2006. 5: 741.

Lukashchuk T.S., Larin V.I., Pshenichnaya S.V. Formation of nanostructured anodic aluminum oxides in oxalic acid. Bulletin of Kharkiv National University, Khimiya. 2010. 19(42): 112. [in Russian].

Nielsch K., Cho, J., Schwirn K. Self-ordering Regimes of Porous Alumina: The 10 Porosity Rule. Nano Lett. 2002. 2(7): 677.

Spiridonov B. A., Yuriev A. V., Muratova N. Influence of anodizing modes on pore formation of aluminum oxide. Voronezh State Technical University Bulletin. 2003. 3(11): 112.

Parkhutik V.P., Shershulsky V.I. Theoretical modelling of porous oxide growth on aluminium. J. Phys. D: Appl. Phys. 1992. 25(8): 1258.

Ono S., Saito M., Ishiguro M., Asoh H. Controlling Factor of Self-Ordering of Anodic Porous Alumina. J. Electrochem. Soc. 2004. 151(8): B473.

Bocchetta P., Sunseri C., BottinoA., alumina membranes electrochemically formed in oxalic acid solution. J. Appl.Electrochem. 2002. 32(9): 977.

Choo Y.H., Devereux O.F. Barrier-Type Aluminum Oxide Films Formed under Porlonged Anodizing, I. Influence of Anodizing Parameters on Film Morphology. J.Electrochem. Soc. 1975. 122: 1645.

Ding G.Q., Zheng M.J., Xu W.L., Shen W.Z. Fabrication of controllable free-standing ultrathin porous alumina membranes // Nanotechnology. 2005. 16(8): 1285.

Pyatkov E.S., Berekchiyan M.V., Yelise­yev A.A., et al. Electrochemical Detection of Barrier Layer Removal for Preparation of Anodic Alumina Membranes with High Permeance and Mechanical Stability. Inorganic Materials: Applied Research. 2018. 9(1): 82.

Gong J., Butler W.H., Zangari G.Tailoring morphology in free-standing anodic aluminium oxide: control of barrier layer opening down to the sub-10 nm diameter. Nanoscale. 2010. 2(5): 778.

Liang J.Y., Chik H., Yin A.J., Xu J. Two dimensional lateral superlattices of nanostructures: nonlithographic formation by anodic membrane template. J. Appl. Phys. 2002. 91: 2544.

Lir H.D.L., Paterson R., New and modified anodic alumina membranes: Part III. Preparation and characterization by gas diffusion of 5 nm pore size anodic alumina membranes // J. Membr. Sci. 2002. 206: 375.

XuW.L., Chen H., Zheng M.J., Optical transmission spectra of ordered porous alumina membranes with different thicknesses and porosities. Optical Mater. 2006. 28: 1160.

Chih-Ting Liu, Yu-Liang Lin,Chien-Wei Chu, et al. Chen Asymmetries in Porous Membranes: Fabrication of Anodic Aluminum Oxide Membranes with Double-Sized Nanopores and Controlled Surface Properties. J. Phys. Chem. C. 2019. 123(23): 14540.

Brzózka A., Brudzisz A., Rajska D., Recent trends in synthesis of nanoporous anodic aluminum oxides in Nanostructured Anodic Metal Oxides Synthesis and Applications Micro and Nano Technologies (Elsevier: 2020: 35).

Azarenkov N.A., Beresnev V.M., Pogrebnyak A.D., Malikov L.V., Turbin P.V. Nanomaterials, nanocoatings, nanotechnology.(Tutorial. Kh: .: V.N.KarazinKhNU, 2009).

Hoang V.V., Oh S.K. Simulation of structural properties and structural transformation of amorphous Al2O3. Physica B: Condensed Matter2004. 352: 73.

Xia Z., Riester L., Sheldon B.W., Mechanical properties of highly ordered nanoporous anodic alumina membranes. Rev. Adv. Mater. Sci. 2004. 6(2): 131.

Akiya S.; Kikuchi T.; Natsui S.; Suzuki R.O. Nanostructural Characterization of Large-Scale Porous Alumina Fabricated via Anodizing in Arsenic Acid Solution. Appl. Surf. Sci. 2017. 403: 652-661.

Abd-Elnaiem A.M.; Mebed A.M.; El-Said W.A.; Abdel-Rahim M.A. Porous and Mesh Alumina Formed by Anodization of High Purity Aluminum Films at Low Anodizing Voltage Thin Solid Films. 2014. 570: 49.

Elabar D.; Hashimoto T.; Qi J.; Skeldon P.; Thompson G.E. Effect of Low Levels of Sulphate on the Current Density and Film Morphology During Anodizing of Aluminium in Chromic Acid. Electrochim. Acta. 2016. 196: 206.

Stepniowski W.J.; Norek M.; Michalska-Doma´nska M.; Incorporation of Copper Chelate Ions Into Anodic Alumina Walls. Mater. Lett. 2013. 106: 242.

Nakajima D.; Kikuchi T.; Natsui S.; Suzuki R. O. Superhydrophilicity of a Nanofiber-Covered Aluminum Surface Fabricated via Pyrophosphoric Acid Anodizing. Appl. Surf. Sci. 2016. 389:173.

Sepúlveda, M.; Castaño J.G.; Echeverría F. Influence of Temperature and Time on the Fabrication of Self-Ordering Porous Alumina by Anodizing in Etidronic Acid. Appl. Surf. Sci. 2018. 454: 210.

Karahaliou P.K., Theodoropulou M., Krontiras C.A., Transient and alternating current conductivity of nanocrystalline porous alumina thin films on silicon, with embedded silicon nanocrystals. J.Appl. Phys. 2004. 95: 2776.

Oh H-J., Park G-S., Kim J-G., JeongY.and Chi, Ch-S. Surface roughness factor of anodic oxide layer for electrolytic capacitors. Mater. Chem. Phys. 2003. 82(2): 331.

Redón R., Vázquez-Olmos A., Mata-Zamora M.E., Contact Angle Studies on Anodic Porous Alumina. Rev. Adv. Mater. Sci. 2006. 11(1): 79.

Thompson D.W., Snyde P.G., Castro L., Optical characterization of porous alumina from vacuum ultraviolet to midinfrared. J. Appl. Phys. 2005. 97: 113511.

Li Y., Zheng M., Ma L. and Shen W. Fabrication of highly ordered nanoporous alumina films by stable high-field anodization. Nanotechnology. 2006. 17(20): 5101. DOI:10.1088/0957-4484/17/20/010

Segawa H.; Okano H.; Wada K. Synthesis of Laminated Alumina Films by AC Oxidation. J. Electrochem. Soc. 2013. 160: D240.

Li F., Zhang L., Metzger R.M. On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide. Chem. Mater. 1998. 10(9): 2470.

Xiaowei Zhao, Peng Jiang, SishenXie et. al. Patterned anodic aluminium oxide fabricated with a Ta mask. Nanotechnology. 2006. 17(1): 35.

Jafari A., Mahvi A. H., Nasseri S., Ultrafiltration of natural organic matter from water by vertically aligned carbon nanotube membrane. J. Environ. Health Sci. Eng. 2015. 13: 51. DOI:10.1186/s40201-015-0207-x

Terryn H., Vereecken J., Landuyt J. Influence of Aluminium Pretreatment on the Growth of Porous Oxide Films. Trans. IMF. 1990. 68(1): 33.

Jessensky O., Müller F., Gösele U. Self-organized formation of hexagonal pore arrays in anodic alumina. Appl. Phys. Lett. 1998. 72: 1173.

Fratila-Apachite L.E., Terryn H., Skeldon P., Thompson G.E. of substrate microstructure on the growth of anodic oxide layers. Electrochim.Acta. 2004. 49(7): 1127.

Fernande J.C.S., Picciochi R., Da Cunha Belo M., and photoelectrochemical studies for the assessment of anodic oxide films on aluminium. Electrochim. Acta. 2004. 49(26): 4701.

Yuzhakov V.V., Chang H-Ch., Miller A.E. Pattern formation during electropolishing. Phys. Rev. B. 1997. 56: 12608.

Chung C.K.; Zhou R.X.; Liu T.Y.; Chang W.T. Hybrid Pulse Anodization for the Fabrication of Porous Anodic Alumina Films From Commercial Purity (99%) Aluminum at Room Temperature. Nanotechnology. 2009. 20: 055301. DOI:10.1088/0957-4484/20/5/055301

Mohammadi I.; Ahmadi S.; Afshar A. Effect of Pulse Current Parameters on the Mechanical and Corrosion Properties of Anodized NanoporousAluminum Coatings. Mater. Chem. Phys. 2016. 183: 490.

Palibroda E. Aluminum porous oxide growth—II. On the rate determining step. Electrochim. Acta. 1995. 40(8): 1051.

Patel Y., Palevičius A., Naginevičius V., Liaudanskaite J., Janušas G. Aluminum oxide membrane as a functional element for filtering bioparticles in micro hydraulic devices // Proc. SPIE11270, Frontiers in ultrafast optics: biomed., sci., and in. appl. XX. 2020 1127004.

Vázquez M. I., Romero V., Vega V., Gar­cía, J., Prida V. M., Hernando, B., Benavente, J. Morphological, chemical surface, and diffusive transport characterizations of a nanoporous alumina membrane. Nanomat. 2015. 5: 2192.

Osmanbeyoglu H., Hurb Tae Bong, Kim Hong Koo Thin alumina nanoporous membranes for similar size biomolecule separation. J. of Membrane Sci. 2009. 343: 1.

Aghili H., Hashemi B., Bahrololoom M.E., Jahromi S. A. J. Fabrication and characterization of nanoporous anodic alumina membrane using commercial pure aluminium to remove Coliform bacteria from wastewater. Proc. Appl. of Ceram. 2019. 13 (3): 235.

Attaluri, A. C., Huang, Z., Belwalkar, A., Geertruyden, W. V., Gao, D., Misiolek W. evaluation of nano-porous alumina membranes for hemodialysis application. ASAIO Journal. 2009. 55(3):217.

Zahid A., Kasi A. K., Kasi J. K., Bokhari S. M., Wahid H. A. Fabrication of mini-dialyzers using anodic aluminum oxide and polysulfone membrane and their comparative study for the improvement of hemodialysis to treat renal failure patients // Pure and appl biol. 2018. -7(2): 643.

Sharma A. Porous anodic alumina membranes for large biomolecule separations. Doctoral thesis (Ph.D), – 2018. University College London.

Joung C.-K., Kim H.-N., Lim M.-C., Jeon T.-J., Kim H.-Y., Kim Y.-R. A nanoporous membrane-based impedimetricimmunosensor for label-free detection of pathogenic bacteria in whole milk. Biosens. and Bioelectr. 2013. 44: 210.

Su T., He L., Mo R., Zhou C., Wang Z., Wan Y., Li C. A non-enzymatic uric acid sensor utilizing ion channels in the barrier layer of a porous anodic alumina membrane. Electrochem. commun. 2018. 96: 113.

Ma Y., Kaczynski J., Ranacher,C., Roshanghias A., Zauner M., Abasahl B. Nano-porous aluminum oxide membrane as filtration interface for optical gas sensor packaging Microelectr. eng. 2018. 198: 29.

Law C. S., Lim S. Y., Abell A. D., Voelcker N. H., Santos A. Nanoporous anodic alumina photonic crystals for optical chemo- and biosensing: fundamentals, advances, and perspectives . Nanomat. 2018. 8: 788.

Goszczak A. J., Adam J., Cielecki P. P., Fiutowski J., Rubahn H.-G., Madsen, M. Nanoscale aluminum concaves for light-trapping in organic thin-films. Optics Commun. 2016. 370:135.

Vandekerkhove A., Negahdar L., Glas D. Synthesis and characterization of Ru-loaded anodized aluminum oxide for hydrogenation catalysis. Chem.Open. 2019. 8(4): 532.

Liu C., Gillette EI., Chen X., Pearse A.J., Kozen A.C., Schroeder M.A.,Gregorczyk K.E., Lee S.B., Rubloff G.W. An all-in-one nanopore battery array. Nat. Nanotechnol. 2014. 9: 1031.

Ahn Y., Park J., Shin D., Cho S., Park S. Y., Kim H., Kim Y. S. Enhanced electrochemical capabilities of lithium ion batteries by structurally ideal AAO separator. J. Mat. chem. A. 2015. 3(20): 10715.

Shi W., Shena Y., Gea D., Xue M., Cao H., Huanga S., Wangc J., Zhangc G., Zhangc F. Functionalized anodic aluminum oxide (AAO) membranes for affinity protein separation. J. of Membr. Sci. 2008. 325: 801.

Stojadinovic S., Vasilic R., Belca I., Tadic M., Kasalic B.,.ZekovicLj.Structural and luminescence characterization of porous anodic oxide films on aluminum formed in sulfamic acid solution. Applied Surf. Sci. 2008. -255:2845.

Ramanareddy P., Ajith K.M., Udayashankar N. K. Morphology and photoluminescence of nano-porous anodic alumina membranes obtained in oxalic acid at different anodization potentials //Nano Express.2020. 1. doi:10.1088/2632-959x/ab976b h.

Stępniowski W. J. , Bojar Z. Nanoporous anodic aluminum oxide: fabrication, characterization, and applications handbook of nanoelectrochemistry. Springer International Publ. Switzerland. 2015. DOI 10.1007/978-3-319-15207-3.

Kikuchi T., Nishinaga O., Natsui S., Suzuki R. O. Self-ordering behavior of anodic porous alumina via selenic acid anodizing // Electroch. Acta. 2014. 137: 728.


Download data is not yet available.