NASICON, solid-state reaction method, composite electrolyte, solid-state battery

How to Cite

Lisovskyi, I., Solopan, S., Belous, A., Khomenko, V., & Barsukov, V. (2020). DEVELOPMENT AND RESEARCH OF COMPOSITE ELECTROLYTE BASED ON LATP/LIPF6 SYSTEM FOR LITHIUM BATTERIES. Ukrainian Chemistry Journal, 86(10), 75-87.


Electrochemical power sources (EPSs) have been an integral part of every modern person’s life for a long time. Lithium-ion batteries (LIB) are the most common among the modern EPSs. They are widely used in the various electronic devices such as smartphones, cameras, laptops, electric vehicles etc. LIBs are considered to be the best power sources for mass use due to their high energy density. However, the low level of safety has always been a weakness of the conventional lithium-ion batteries with a polymer separator impregnated with a liquid electrolyte.

The paper shows the fundamental possibility to develop the lithium-ion batteries with a composite electrolyte based on a porous ceramic matrix LATP, impregnated with 1M solution of LiPF6 in a mixture of ethylene carbonate and dimethyl carbonate (1:1). Two samples of composite electrolyte of different thickness (0.8 mm and 1.6 mm) were produced. The specific capacity of the cathode material in the elements with a composite electrolyte equals 140.5 and 138.2 mAh/g, which is not significantly less than the corresponding value for the cells with a liquid electrolyte (145.6 mAh/g). The decrease in the capacity of the cathode material in the elements with a composite electrolyte is primarily connected with the non-optimal thickness of the ceramic electrolyte and, accordingly, with the increase in the internal resistance of the cell. It is established that prototypes of lithium-ion batteries with a composite electrolyte show higher stability of capacitive characteristics during long cycling. Also, the proposed composite electrolyte allows solving the problems of lithium-ion batteries associated with electrolyte leakage (liquid electrolyte is immobilized only in the pores of ceramics) and fire hazard, primarily by levelling the formation of lithium dendrites in the interelectrode space.

Further research will be aimed at the reducing the thickness of the ceramic electrolyte and developing a process for applying a protective layer to eliminate the recovery of LATP with lithium metal.


Lu J., Chen Z., Ma Z., Pan F., Curtiss L. A., Amine K. The role of nanotechnology in the development of battery materials for electric vehicles. Nat. Nanotechnol. 2016. 11 (12): 1031.

Peters J.F., Baumann M., Zimmermann B., Braun J., Weil M. The environmental impact of Li-Ion batteries and the role of key parameters – A review. Renew. Sustain. Energy Rev. 2017. 67: 491.

Kasnatscheew J., Wagner R., Winter M., Cekic-Laskovic I. Interfaces and Materials in Lithium Ion Batteries: Challenges for Theoretical Electrochemistry. Modeling Electrochemical Energy Storage at the Atomic Scale. (Springer, 2018). P. 23–51.

Besenhard J.O., Winter M. Insertion reactions in advanced electrochemical energy storage. Pure Appl.Chem. 1998. 70 (3): 603.

Winter M., Besenhard J.O., Spahr M.E., Novak P. Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 1998. 10 (10): 725.

Duh Y.-S., Chen Y.-L., Kao C.-S. Thermal stability of ethylene carbonate reacted with delithiated cathode materials in lithium-ion batteries. J. Therm. Anal. Calorim. 2017. 127 (1): 995

Hess S., Wohlfahrt-Mehrens M., Wacht­ler M. Flammability of Li-ion battery electrolytes: flash point and self-extin­guishing time measurements. J. Electro­chem. Soc. 2015. 162 (2): A3084.

Ouyang D., He Y., Chen M., Liu J., Wang J. Experimental study on the thermal behaviors of lithium-ion batteries under discharge and over-charge conditions. J. Therm. Anal. Calorim. 2018. 132 (1): 65.

Varzi A., Raccichini R., Passerini S., Scrosati B. Challenges and prospects of the role of solid electrolytes in the revitalization of lithium metal batteries. J. Mater. Chem. A. 2016. 4 (44): 17251.

Janek J., Zeier W.G. A solid future for battery development. Energy. 2016. 500 (400): 300.

Hayashi A., Ohtomo T., Mizuno F., Tada­naga K., Tatsumisago M. All-solid-state Li/S batteries with highly conductive glass–ceramic electrolytes. Electrochem. commun. 2003. 5 (8): 701.

Kobayashi Y., Miyashiro H., Takei K., Shi­gemura H., Tabuchi M., Kageyama H., Iwahori T. 5 V class all-solid-state com­posite lithium battery with Li3PO4 coated LiNi0.5Mn1.5O4. J. Electrochem. Soc. 2003. 150 (12): A1577.

Li J., Ma C., Chi M., Liang C., Dudney N.J. Solid electrolyte: the key for high voltage lithium batteries. Adv. Energy Mater. 2015. 5 (4): 1401408.

Zhu Y., He X., Mo Y. Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles cal­cu­lations. ACS Appl. Mater. Interfaces. 2015. 7 (42): 23685.

Hameer S., van Niekerk J.L. A review of large-scale electrical energy storage. Int. J. Energy Res. 2015. 39 (9): 1179.

Manthiram A., Yu X., Wang S. Lithium Battery Chemistries Enabled by Solid-State Electrolytes. Nat. Rev. Mater. 2017. 2 (4): 1.

Hartmann P., Leichtweiss T., Busche M.R., Schneider M., Reich M., Sann J., Adelhelm P., Janek J. Degradation of NASICON-type materials in contact with lithium metal: formation of mixed conducting interphases (MCI) on solid electrolytes. J. Phys. Chem. C. 2013. 117 (41): 21064.

Wenzel S., Leichtweiss T., Krüger D., Sann J., Janek J. Interphase formation on lithium solid electrolytes – An in-situ approach to study interfacial reactions by photoelectron spectroscopy. Solid State Ionics. 2015. 278:98.

Wenzel S., Weber D.A., Leichtweiss T., Busche M.R., Sann J., Janek J. Interphase formation and degradation of charge transferkinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte. Solid State Ionics. 2016. 286: 24.

Luntz A.C., Voss J., Reuter K. Interfacial challenges in solid-state Li ion batteries. J. Phys. Chem. Lett. 2015. 6 (22): 4599.

Wu B., Wang S., Evans IV W.J., Deng D.Z., Yang J., Xiao J. Interfacial behaviours between lithium ion conductors and electrode materials in various battery systems. J. Mater. Chem. A. 2016. 4 (40): 15266.

Han X., Gong Y., Fu K.K., He X., Hitz G.T., Dai J., Pearse A., Liu B., Wang H., Rubloff G. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater. 2017. 16 (5):572.

Belous A.G., Kobylianska S.D. Lithium conducting solid oxide electrolytes. (Kyiv: Naukova dumka, 2018)

Aono H., Sugimoto E., Sadaoka Y., Imanaka N., Adachi G.Y. Ionic conductivity of solid electrolytes based on lithium titanium phosphate. J. Electrochem. Soc. 1990. 137 (4): 1023.

Kim D. H., Kim M. Y., Yang S. H., Ryu H. M., Jung H. Y., Ban H. J., Park J. S., Lim J.S., Kim H. S. Fabrication and electrochemical characteristics of NCM-based all-solid lithium batteries using nano-grade garnet Al-LLZO powder. J. Ind. Eng. Chem. 2019. 71: 445.

Liang X., Han D., Wang Y., Lan L., Mao J. Preparation and performance study of a PVDF–LATP ceramic composite polymer electrolyte membrane for solid-state batteries. RSC Adv. 2018. 8 (71): 40498.

Hartmann P., Leichtweiss T., Busche M. R., Schneider M., Reich M., Sann J., Adel­helm P., Janek J. Degradation of NASICON-Type Materials in Contact with Lithium Metal: Formation of Mixed Conducting Interphases (MCI) on Solid Electrolytes. J. Phys. Chem. C 2013. 117 (41): 21064.

Wenzel S., Leichtweiss T., Krüger D., Sann J., Janek J. Interphase Formation on Lithium Solid Electrolytes—An in Situ Approach to Study Interfacial Reactions by Photoelectron Spectroscopy. Solid State Ionics 2015. 278: 98.

Kang I. S., Lee Y.-S., Kim D.-W. Improved Cycling Stability of Lithium Electrodes in Rechargeable Lithium Batteries. J. Electro­chem. Soc. 2013. 161 (1): A53.


Download data is not yet available.