diazonium salts of 1(2)-amino-9,10-anthracenedione, dediazonation, azo coupling, annulation, heterylfunctionalization.

How to Cite

Stasevich, M., Zvarych, V., Novikov, V., & Vovk, M. (2020). SYNTHETIC POTENTIAL OF 9,10-ANTHRAQUINONYLDIAZONIUM SALTS. Ukrainian Chemistry Journal, 86(9), 55-72.


For the first time, the literature sources concerning the chemical transformations of diazonium salts of 1(2)-amino-9,10-anthracenediones are generalized and systematized. The potential of 9,10-dioxoanthracenyldiazonium salts as key substrates in the preparation of various linear-functionalized, acyclic and heterocyclic derivatives has been determined. The main synthetic transformations of diazonium salts of amino-9,10-anthracenediones, which are  realized without preserving the azo function lead to the formation of reaction products of Sandmeyer, Meerwein, and GombergBachmannHay, are analyzed. The use of 9,10-dioxoanthracenyldiazonium salts or products of their transformations for obtaining heteryl-containing condensed and functionalized derivatives is presented.


1. Gorelik М.V. Chemistry of Anthraquinones and Their Derivatives. (Moscow: Che­mistry, 1983. [in Russian].
2. Sweidan K., Zalloum H., Sabbah D. A., Idris G., Abudosh K., Mubarak M.S. Syn­thesis, characterization, and anticancer evaluation of some new N1-(anthraquinon-2-yl)amidrazone derivatives. Canadian Journal of Chemistry. 2018. 96: 1123.
3. Denisov V.Ya., Tkachenko T.B. Investigation of the reactions of anthraquinonyl diazonium salts. Izvestiya Vysshikh Uchebnykh Zavedenii, Seriya “Khimiya I Khimicheskaya Tekhnologiya”. 2005. 48: 99.
4. Baqi Y., Müller C.E. Efficient and mild deamination procedure for 1-aminoanthraquinones yielding a diverse library of novel derivatives with potential biological activity. Tetrahedron Letters. 2012. 53: 6739.
5. Rochlin E., Rappoport Z. Stable simple enols. resolution of chiral 1-[9‘-(2‘-fluoroanthryl)]-2,2-dimesitylethenol. A different racemization mechanism for the enol and its acetate. Journal of Organic Chemistry. 2003. 68: 216.
6. Proctor C.J., Kralj B., Larka E.A., Porter C.J., Maquestiau A., Beynon J.H. Studies of consecutive reactions of quinones in a reversed geometry mass spectrometer. Organic Mass Spectrometry. 1981. 16: 312.
7. Shao M., Chen G., Zhao Y. Synthesis and electronic properties of a conjugated ttfaq trimer and donor-acceptor ensembles of TTFAQ and anthraquinone. Synlett. 2008. 3: 371.
8. Baik W., Luan W.Q., Lee H.J., Yoon C.H., Koo S., Kim B.H. Efficient one-pot transformation of aminoarenes to haloarenes using halodimethylisulfonium halides generated in situ. Canadian Journal of Chemistry. 2005. 83: 213.
9. Willem F., van der Schalk U. Über anthrachinon-carbonsäure. Chemische Berichte. 1911. 44: 128.
10. Iden H., Fontaine F.-G., Morin J.-F. Syn­thesis and complexation study of new ExTTF-based hosts for fullerenes. Organic & Biomolecular Chemistry. 2014. 12: 4117.
11. Dyall L.K. Pyrolysis of aryl azides. IV. Neighbouring group effects by ortho carbonyl groups. Australian Journal of Chemistry. 1977. 30: 2669.
12. Mullock E.B., Suschitzky H. Syntheses of heterocyclic compounds, part XXI. Oxazoles from pyrolysis of aryl and heterocyclic azides in a mixture of acetic and polyphosphoric acid. Journal of the Chemical Society C: Organic. 1968. 0: 1937.
13. Verfahren zur darstellung von mercaptanen der anthrachinonreibe. German Patent DE241985, December 6, 1908.
14. Gattermann L. Die mercaptane des anthrachinons. Justus Liebigs Annalen der Chemie. 1912. 393: 113.
15. Shah M.K., Shah M.K., Shah K.H. Thio­cyanation of 1-aminoanthraquinones. Indian Journal of Chemistry. 1976. 14B (8): 625.
16. Reid E.E., Mackall C.M., Miller G.E. Derivatives of anthraquinone. Aliphatic thio-ethers, dithio-ethers, and thio-ether sulfonic acids. Journal of the American Chemical Society. 1921. 43: 2104.
17. Ikemoto N., Liu J.C., Brands K.M.J., McNamara J.M., Reider P.J. Practical routes to the triarylsulfonyl chloride intermediate of a β3 adrenergic receptor agonist. Tetrahedron. 2003. 59: 1317.
18. Lukin A.M., Petrova G.S. On the synthesis of anthraquinone-1-arsonic 1-phosphonic acids by the diazomethod. Zhurnal obshchey khimii. 1957, 27, 2171.
19. Sabadakh O.P., Rev’yuk A.R., Ta­ras T.M., Bolіbrukh L.D. Synthesis of Antra­chi­nonphosphonic Acids. Visnyk Nat­sio­nal'noho universytetu «L'vivs'ka politekhnika», seriya Khimiya, tekhnolohiya rechovyn ta yikh zastosuvannya. 2008. 609: 145.
20. Zvarych V., Stasevych M., Lunin V., Deniz N.G., Sayil C., Ozyurek M., Guclu K., Vovk M., Novikov V. Synthesis and investigation of antioxidant activity of the dithiocarbamates derivatives of 9,10-anthracenedione. Monatshefte für Chemie. 2016. 147: 2093.
21. Antonio C.B., de Oca M., Correia, C.R.D. Synthesis of aryl pyrrolizidines from endocyclic enecarbamates. Novel applications of the Heck arylation of 3-pyrrolines using diazonium salts. ARKIVOC. 2003, x: 390.
22. Haeupler B., Burges R., Janoschka T., Jaehnert T., Wild A., Schubert U.S. PolyTCAQ in organic batteries: enhanced capacity at constant cell potential using two-electron-redox-reactions. Journal of Materials Chemistry A. 2014. 2: 8999.
23. Coleman R.S., Mortensen M.A. Stereo­controlled synthesis of anthracene β-C-ribosides: fluorescent probes for photophysical studies of DNA. Tetrahedron Letters. 2003. 44: 1215.
24. Phanstiel O. IV. Fluorescent cytotoxic compounds specific for the cellular polyamine transport system. U.S. Patent 8,410,311, April 2, 2013.
25. Lee K.-H., Kim M.-K., Yang G.-S. Con­den­sed-cyclic compound and organic light emitting diode having organic layer including the same. U.S. Patent 20110031484, February 10, 2011.
26. Nomura H., Kawakami S., Ohsawa N., Suzuki T. Anthracene derivatives and light-emitting devices using the anthracene derivatives. U.S. Patent 2009004506, January 1, 2009.
27. Crisostomo F.P., Martin T., Carrillo R. As­corbic acid as an initiator for the direct C–H arylation of (hetero)arenes with anilines nitrosated in situ. Angewandte Chemie International Edition. 2014. 53: 2181.
28. Crisostomo F.P., Martin T., Carrillo R. Ascorbic acid as an initiator for the direct C–H arylation of (hetero)arenes with anilines nitrosated in situ. Angewandte Chemie. 2014. 126: 2213.
29. Stepanov A.A., Gornostaev L.M., Vasi­lev­sky S.F., Arnold E.V., Mamatyuk V.I., Fadeev D.S., Gold B., Alabugin I.V. Cha­meleonic reactivity of vicinal diazonium salt of acetylenyl-9,10-anthraquinones: syn­thetic application toward two heterocyclic targets. Journal of Organic Chemistry. 2011. 76: 8737.
30. Sutter P., Weis C.D. Ring opening reactions of 6H-anthra[1,9-cd]isoxazol-6‐ones and related compounds. Journal of Heterocyclic Chemistry. 1982. 19: 997.
31. Stasevych M., Zvarych V., Lunin V., Vovk M., Novikov V. The new 1,2,3-triazo­ly­lantracene-9,10-diones: synthesis and computer bioactivity screening. Chemistry & Chemical Technology. 2017. 11: 1.
32. Tkachenko TB, Stepanova E.Yu. Inves­tigation of the interaction of 1-anthraquinonyldiazonium salts with phenylacetylene and styrene. Vestnik Kemerovskogo gosudarstvennogo universiteta. 2008. 2: 227.
33. Tkachenko T.B. The reactions of aminoanthraquinones of anthraquinonyl diazonium salts, accompanied by a complication of the carbon skeleton. Abstract of the dissertation for the degree of candidate of chemical sciences: specialty 02.00.03 “Organic chemistry”. Kemerovo State University, Tomsk, 2005.
34. Stasevych M.V., Zvarych V.I., Lunin V.V., Kopak N.A., Novikov V.P., Chernobaev I.I., Vovk M.V. Arylation of pyridine with 9,10-dioxoanthracenyl-1(2)-diazonium hydrosulfates. Russian Journal of General Chemistry. 2018. 88: 836.
35. Weis C.D. Meerwein arylation reactions of olefins with anthraquinone diazonium hydrogen sulfates: formation of new carbon bonds at the carbon atoms C-1 and at C-1,5 of the anthraquinone system. Dyes and Pigments. 1988. 9(1): 1.
36. Ribaldone G., Borsotti G. Process for preparing antraquinone-1-acetic acid and esters thereof. U.S. Patent 3,891,650, June 24, 1975.
37. Obushak N.D., Lyakhovich M.B., Fe­do­rovich I.S., Ganushchak N.I. 1-Anthra­quinonediazonium tetrachlorocuprate(II) and its dediazotization. Russian Journal of Organic Chemistry. 1997. 33: 345.
38. Gornostaev L. M., Arnold E.V., Lykova E. V., Sadoschenko M.V. Synthesis and functionalization of 7-hydroxyanthra[2,1-b]benzo[d]furan-8,13-diones. Chemistry of Heterocyclic Compounds. 2010. 6: 665.
39. Klimenko L.S., Mainagashev I.Ya., Fo­kin E.P. Photochemical and thermal transformations of diazo derivatives of 1-aryloxy- and 1-arylthio-2-aminoanthraquinones. Bulletin of the Russian Academy of Sciences, Division of chemical science. 1992. 41: 459.
40. Bien H.-S., Stawitz J., Wunderlich K. An­thra­quinone Dyes and Intermediates. In Ullmann’s Encyclopedia of Industrial Chemistry, 6th ed., Ed. Kellersohn T. (Weinheim, Germany: Wiley-VCH Verlag Gmbh, 2003).
41. de Pieri Troiani E., Faria R.C. Cathodically pretreated poly(1-aminoanthraquinone)- modified electrode for determination of ascorbic acid, dopamine, and uric acid. Journal of Applied Electrochemistry. 2013. 43: 919.
42. Mahfouz N.M.A., Emara K.M. Colorimetric determination of isoniazid and its pharmaceutical formulations. Talanta. 1993. 40: 1023.
43. Stasevych M., Zvarych V., Lunin V., Ko­pak N., Komarovska-Porokhnyavets O., Deniz N.G., Sayil C., Ozyurek, M., Guclu, K., Vovk M., Novikov V. Synthesis, investigation of antimicrobial and antioxidant activity of anthraquinonylhydrazones. Monatshefte für Chemie. 2018. 149: 1111.
44. Brass K., Albrecht F. Zur Kenntnis der Diazide des Anthrachinons. Chemische Berichte. 1928. 61: 983.
45. Hai-Ying L., Liang-Cai L. The synthesis and structure characteristics of two novel azo-quinone derivatives. Synthetic Communications. 2001. 31: 155.
46. Saika T., Iyoda T., Honda K., Shimidzu T. Multi-mode chemical transducers. Part 2. Electrochromic and photochromic properties of azoquinone compounds. Journal of the Chemical Society, Perkin Transactions 2. 1993. 6: 1181.
47. Sakilidi V.T., Bulgakova N.A., Gornostaev L.M., Taigunova V.S. Structure of diazo coupling products of anthraquinone-1-diazonium salts with 2,6-di-tert-butylphenol and β-naphthol. Russian Journal of Organic Chemistry. 2000. 36: 1485.
48. Bulgakova N. A. Synthesis, structure and properties of some derivatives of 9,10-anthraquinone containing a nitrogen-nitrogen bond. Abstract of the dissertation for the degree of candidate of chemical sciences: specialty 02.00.03 “Organic Chemistry”, Krasnoyarsk State Pedagogical University, Krasnoyarsk, 2002.
49. Khan A.K., Raoof I.B., Essa H. J. Synthesis, characterization of some new azo compounds containing 1,3-oxazepine, anthraquinone moieties and studying their activity against pathogenic bacteria. Journal of Natural Sciences Research. 2015. 5(22): 69.
50. Sabadakh O.P., Moklyak M.G., Luchkevich E.R., Taras T.M., Bolibrukh L.D., Gubitska I.I. Selection of conditions for the synthesis of triazines of the anthraquinone series. Visnyk Natsional'noho universytetu «L'vivs'ka politekhnika», seriya Khimiya, tekhnolohiya rechovyn ta yikh zastosuvannya. 2014. 787: 249.
51. Sabadakh O.P., Taras T.N., Luchkevich E.R., Novikov V.P. Synthesis of triazene derivatives of 9,10-anthraquinone. Russian Journal of Organic Chemistry. 2015. 51: 277.
52. Fedenok L.G., Barabanov I.I., Zolni­ko­va N.A., Bashurova V.S., Bogdanchikov G.A. Mechanism and synthesis potentialities of the cyclization of vic-(alkynyl)arenediazonium salts. Chemistry for Sustainable Development. 2011. 19: 647.
53. Fedenok L.G., Barabanov I.I., Bashu­rova V.S., Bogdanchikov G.A. Mechanism of the heterocyclization of vic-alkynylanthra- and vic-alkynylnaphthoquinone diazonium salts. Tetrahedron. 2004. 60: 2137.
54. Denisov V. Ya., Tkachenko TB Studies of reactions of salts of anthraquinonyl diazonium. Izvestiya Vysshikh Uchebnykh Zavedenii, Seriya “Khimiya I Khimicheskaya Tekhnologiya”. 2005. 48: 99.
55. Zvarych V., Stasevych M., Novikov V., Ru­sanov E., Vovk M., Szweda P., Grecka K., Milewski S. Anthra[1,2-d][1,2,3]triazine- 4,7,12(3H)-triones as a new class of antistaphylococcal agents: synthesis and biological evaluation. Molecules. 2019. 24: 4581.


Download data is not yet available.