alloy, cobalt, rhenium, tungsten, electrocatalysis.

How to Cite

Yapontseva, Y., Maltseva, T., & Kublanovsky, V. (2020). ELECTROCATALYSIS OF THE HYDROGEN EVOLUTION REACTION ON CoRe, CoWRe SUPERALLOYS DEPOSITED FROM CITRATE ELECTROLYTE . Ukrainian Chemistry Journal, 86(9), 28-38. https://doi.org/10.33609/2708-129X.86.9.2020.28-38


Chemical composition and electrocatalytic properties of binary (CoRe) and ternary (CoWRe) alloys electrodeposited from citrate electrolyte with different amount of potassium perrhenate (0.01 and 0.05 mol·L-1) depending on the deposition current density (5÷40 mA·cm-2) are shown. It was found that rhenium, which is practically not reduced at the cathode to the metal from an individual solution, in the formation of an electrolytic alloy with cobalt is able to be reduced in large quantities (44-67 at.%); in the formation of ternary alloys there is a decrease in the amount of rhenium in the alloy (15-41 at.%) at a tungsten content of 4-5 at.%, which is almost unchanged at all values ​​of the deposition current density. The reaction of hydrogen ions electroreduction on the obtained coatings was studied by the method of stationary voltammetry. The kinetic parameters of the reaction (coefficients of the Tafel equation, logarithm of the hydrogen exchange current density and overvoltage at the selected current density of 10 mA·cm-2) are calculated and it is shown that the best electrocatalysts for hydrogen electroreduction in alkaline solution can be ternary alloys CoWRe with rhenium content 15-20 at. %, which allow to increase almost by an order of magnitude the exchange current density and significantly reduce hydrogen overvoltage (150-170 mV) compared to cobalt. The presence of a small number of refractory metal atoms allows obtaining such a distribution of elements on the surface that provides surface diffusion of hydrogen atoms from the rhenium or tungsten atom, where the first electron transfer are quickly (Volmer reaction), to the cobalt atom, on which electrochemical desorption takes place (Heyrovsky reaction). The increase in the content of refractory metals leads to a decrease in the electrocatalytic effect.



1. Tsyntsaru N., Dikusar A., Cesiulis H. et al. Tribological and corrosive characteristics of electrochemical coatings based on cobalt and iron superalloys Powder Metall Met. Ceram. 2009. 48: 419.
2. Eliaz N., Gileadi E. Induced Codeposition of Alloys of Tungsten, Molybdenum and Rhenium with Transition Metals Modern Aspects of Electrochemistry. 2008. 42. ed. C. Vayenas et al., Springer, New York.
3. Vernickaite E., Tsyntsaru N., Sobczak K., Cesiulis H. Electrodeposited tungsten-rich Ni-W, Co-W and Fe-W cathodes for efficient hydrogen evolution in alkaline medium. Electrochimica Acta. 2019. 318: 597.
4. Манилевич Ф.Д., Козин Л.Ф., Машкова Н.В., Куцый А.В. Снижение перенапряжения выделения водорода на стальных катодах путем модифицирования их поверхности электролитическими сплавами. Вопросы химии и химической технологии. 2011. 2(4): 52.
5. Vernickaite E., Bersirova O., Cesiulis H. and Tsyntsaru N. Design of Highly Active Electrodes for Hydrogen Evolution Re­action Based on Mo-Rich Alloys Electro­deposited from Ammonium Acetate Bath. Coatings. 2019. 9(85). – doi:10.3390/coatings 9020085
6. Rhenium, in: ASM Handbook, vol. 2, 10th ed., ASM International, Ohio. 1990. p. 1150.
7. Eliaz N., Gileadi E. Induced codeposition of alloys of tungsten, molybdenum and rhenium with transition metals, in: C.G. Vayenas, R.E. White, M.E. Gamboa-Aldeco (Eds.), Modern Aspects of Electrochemistry. 42. Springer, New York. 2008. P. 191 (Chapter 4).
8. Naor A., Eliaz N., Gileadi E. Electro­deposition of Alloys of Rhenium with Iron-Group Metals from Aqueous Solutions J. Electrochemical Society. 2010. 157: 422.
9. Jaksic M.M. Electrocatalysis of Hydrogen Evolution in the Light of the Brenner-Engel Theory for Bonging in Metals and Intermetallic Phases. Electrochim. Acta. 1984. 29: 1539.
10. Naor A., Eliaz N., Gileadi E. Electrodeposition of rhenium–nickel alloys from aqueous solutions. Electrochimica Acta. 2009. 54: 6028.
11. Berezina S.I., Keshner T. D., Sharapova L. G. Influence of the composition of the iron subfamily element complexes on the stimulated cathodic reduction of rhenate- ions into an alloy of citrate-glycinate electrolytes Elektrokhimiya. 1994. 30: 174.
12. Schalenbach M., Zeradjanin A., Kasian O., Cherevko S., Mayrhofer K. J.J. A Perspec­tive on Low-Temperature Water Electro­lysis – Challenges in Alkaline and Acidic Technology. Int. J. Electrochem. Sci. 2018. 13:.1173.
13. Японцева Ю. С., Мальцева Т. В., Кубла­новський В. С. Особливості електро­осадження сплава кобальт – вольфрам – реній // Укр. хім. журн. 2019. 85: 80.
14. Ермоленко И. Ю., Ведь М. В., Сахненко Н. Д., Каракуркчи А. В., Мирная Т. Ю. Особенности соосаждения железа (III) с молибденом из цитратних электролитов. Вопросы химии и химической технологии. Днепропетровск: ГВУЗ УГХТУ. 2015. 6(104): 47.
15. Quaino P., Juarez F., Santos E. and Schmickler W. Volcano plots in hydrogen electrocatalysis – uses and abuses Beilstein J. Nanotechnol. 2014. 5: 846.
16. Conway B.E., Tilak B.V. Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H. Electrochimica Acta. 2002. 47:3571.
17. Kuznetsov V.V., Gamburg Yu.D., Zhuli­kov V.V., Krutskikh V.M., Filatova E.A., Trigub A.L., Belyakova O.A. Electrodeposited NiMo, CoMo, ReNi, and electroless NiReP alloys as cathode materials for hydrogen evolution reaction // Electrochi­mica Acta. 2020, DOI: 10.1016/j.electacta.2020.136610.
18. Wang C., Bilan H. K., Podlaha E. J. Electrodeposited Co-Mo-TiO2 Electrocatalysts for the Hydrogen Evolution Reaction J. Electro­chemical Society. 2019. 166(10): F661.


Download data is not yet available.