titanium dioxide, surface properties, electrolyte, solid electrolyte interface, quasi-equilibrium voltage

How to Cite

Globa, N., Lisnycha, T., Shmatok, Y., Sirosh, V., & Kirillov, S. (2020). STRUCTURAL, SURFACE AND ELECTROCHEMICAL CHARACTERISTICS OF TiO2 FOR LITHIUM-ION BATTERIES. Ukrainian Chemistry Journal, 86(9), 14-27.


The paper presents structural, surface, thermodynamic and kinetic characteristics of titanium dioxide samples obtained by means of alkaline hydrolysis of TiCl4 by LiOH solutions and further heat treatment. TiO2 samples have the anatase structure with crystallite size of 7–10 nm. An increase in the heat treatment temperature from 150 °C to 470 °C leads to a decrease in the specific surface area from 404 to 80 m2/g and the total pore volume from 0.340 to 0.152 cm3/g. The influence of electrolyte composition and surface properties of TiO2 on its behavior in cells with lithium anode investigated by means of galvanostatic cycling and impedance spectroscopy is discussed.


1. Macklin W.J., Neat R.J. Performance of titanium dioxide-based cathodes in a lithium polymer electrolyte cell. Solid State Ionics. 1992. 53: 694.
2. Lafont U., Carta D., Mountjoy G., Chadwick A.V., Kelder E.M. In situ structural changes upon electrochemical lithium insertion in nanosized anatase TiO2. Physical Chemistry C. 2010. 114: 1372.
3. Du T., Zhang W., Peng H., Jain G. Meso­porous TiO2 spheres/graphene composite as a high-performance anode material for lithium-ion batteries. International Journal of Electrochemical Science. 2018. 13: 6229.
4. Madian M., Eychmüller A., Giebeler L. Cur­rent advances in TiO2-based nanostructure electrodes for high performance lithium ion batteries. Batteries. 2018. 4: 7.
5. Wagemaker M., Borghols W.J., Mulder F.M. Large impact of particle size on insertion reactions. A case for anatase LixTiO2. Journal of the American Chemical Society. 2007. 129: 4323.
6. Jiang C., Wei M., Qi Z., Kudo T., Honma I., Zhou H. Particle size dependence of the lithium storage capability and high rate performance of nanocrystalline anatase TiO2 electrode. Journal of Power Sources. 2007. 166: 239.
7. Wagemaker M., Borghols W.J., van Eck E.R., Kentgens A.P., Kearley G.J., Mulder F.M. The influence of size on phase morphology and Li‐ion mobility in nanosized lithiated anatase TiO2. Chemistry–A European Journal. 2007. 13: 2023.
8. Sudant G., Baudrin E., Larcher D., Taras­con J.M. Electrochemical lithium reacti­vity with nanotextured anatase-type TiO2. Journal of Materials Chemistry. 2005. 15: 1263.
9. Hu Y.-S., Kienle L., Guo Y.G., Maier J. High lithium electroactivity of nanometer-sized rutile TiO2. Advanced Materials. 2006. 18: 1421.
10. Kavan L., Kalbac M., Zukalova M., Exnar I., Lorenzen V., Nesper R., Graetzel M. Li­thi­um storage in nanostructured TiO2 made by hydrothermal growth. Chemistry of Materials. 2004. 16: 477.
11. El-Deen S.S., Hashem A.M., Ghany A.A., Indris S., Ehrenberg H., Mauger A., Juli­en C.M. Anatase TiO2 nanoparticles for lithium-ion batteries. Ionics. 2018. 24: 2925.
12. Kirillov S.A., Lisnycha T.V., Chernukhin S.I. Precipitated nanosized titanium dioxide for electrochemical applications. Journal of Power Sources. 2011. 196: 2221.
13. Belak A.A., Wang Y., Van der Ven A. Kinetics of anatase electrodes: the role on ordering, anisotropy, and shape memory effects. Chemistry of Matterials. 2012. 24: 2894.
14. Shen K., Chen H., Klaver F., Mulder F.M., Wagemaker M. Impact of particle size on the non-equilibrium phase transition of lithium-inserted anatase TiO2. Chemistry of Materials. 2014. 26: 1608.
15. Gentili V., Brutti S., Hardwick L.J., Arm­strong A.R., Panero S., Bruce P.G. Lithium insertion into anatase nanotubes. Chemistry of Materials. 2012. 24: 4468.
16. Rai A.K., Anh L.T., Gim J., Mathew V., Kang J., Paul B.J., Song J., Kim J. Simple synthesis and particle size effects of TiO2 nanoparticle anodes for rechargeable lithium ion batteries. Electrochimica Acta. 2013. 90: 112.
17. Morgan B.J., Watson G.W. Role of lithium ordering in the LixTiO2 anatase → titanate phase transition. The Journal of Physical Chemistry Letters. 2011. 2: 1657.
18. Lafont U., Carta D., Mountjoy G., Chadwick A.V., Kelder E.M. In situ structural changes upon electrochemical lithium insertion in nanosized anatase TiO2. Physical Chemistry C. 2010. 114: 1372.
19. Singh D. P., George A., Kumar R.V., ten Elshof J.E., Wagemaker M. Nanostructured TiO2 anatase micropatterned three-dimensional electrodes for high-performance Li-ion batteries. The Journal of Physical Chemistry C. 2013. 117: 19809.
20. Søndergaard M., Shen Y., Mamakhel A., Marinaro M., Wohlfahrt-Mehrens M., Won­syld K., Dahl S., Iversen B.B. TiO2 nanoparticles for Li-ion battery anodes: mitigation of growth and irreversible capacity using LiOH and NaOH. Chemistry of Materials. 2015. 27: 119.
21. Madej E., Ventosa E., Klink S., Schuh­mann W., La Mantia F. Aging effects of anatase TiO2 nanoparticles in Li-ion batteries. Physical Chemistry Chemical Physics. 2014. 16: 7939.
22. Auer A., Portenkirchner E., Götsch T., Valero-Vidal C., Penner S., Kunze-Lieb­häu­ser J. Preferentially oriented TiO2 nanotubes as anode material for Li-ion batteries: insight into Li-ion storage and lithiation kinetics. ACS Applied Materials & Interfaces. 2017. 9: 36828.


Download data is not yet available.