SOL-GEL PROCESSED SIO2-AL2O3 XEROGELS: SYNTHESIS AND LUMINESCENT PROPERTIES
№1

Keywords

sol-gel method, silica, alumina, photoluminescence.

How to Cite

Smola, S., Fadieiev, Y., Rusakova, N., Rusakova, M., & Efryushina, N. (2020). SOL-GEL PROCESSED SIO2-AL2O3 XEROGELS: SYNTHESIS AND LUMINESCENT PROPERTIES. Ukrainian Chemistry Journal, 86(9), 3-13. https://doi.org/10.33609/2708-129X.86.9.2020.3-13

Abstract

SiO2-Al2O3 xerogels with various Si : Al ratios were synthesized via sol-gel method (two kinds of synthetic procedures were used) and characterized by means of elemental analysis, XRD, thermogravimetry and IR spectroscopy. No losses of precursors were found during the synthesis and the introduced components are quantitatively transferred from the initial mixture to the composition of the formed samples.The position of the luminescence band in the 300–500 nm region depends on the wavelength of the exciting light, time of gel maturation and the drying temperature, which is the manifestation of the influence of the structure of units in xerogels on the luminescent properties.

https://doi.org/10.33609/2708-129X.86.9.2020.3-13
№1

References

1. Brinker C.J. Sol-gel science: the physics and chemistry of sol-gel processing / Brin­ker C. J., Scherer G.W. – London: Academic Press, 1990. – 908 p.
2. Dhatarwal P., Sengwa R.J. Structural and dielectric characterization of (PVP/PEO)/Al2O3 nanocomposites for biodegradable nanodielectric applications. Advanced Composites and Hybrid Materials. 2020. https://doi.org/10.1007/s42114-020-00168-y.
3. Hybrid materials: synthesis, characterization, and applications / ed. By Kickel­bick G. – Wiley, 2007. – 516 p.
4. Binnemans K. Lanthanide-based luminescent hybrid materials. Chemical Reviews. 2009. 109: 4283.
5. Yan B. Recent progress in photofunctional lanthanide hybrid materials. RSC Advances. 2012. 2: 9304.
6. Yatluk Yu.G., Zhuravlev N.A., Koryakova O.V., Neudachina L.K., Skorik Yu.A. New hybrid chelating sorbents with grafted 3_aminopropionate groups based on mixed silicon, aluminum, titanium, or zirconium oxides. Russian Chemical Bulletin.2005. 54: 1836.
7. Pang X., Zhang H., Yu X., Wang T., Geng L., Wang Y., Li Y. Synthesis and characterization of novel luminescent europium(III) hybrid materials with a host based on titania-mesoporous silica or alumina-mesoporous silica. RSC Advances. 2015.5: 84790.
8. Guo L., Yan B. Photoluminescent rare earth inorganic-organic hybrid systems with different metallic alkoxide components through 2-pyrazinecarboxylate linkage. Journal of Photochemistry and Photobiology A: Chemistry. 2011. 224: 141.
9. Yan B. Novel photofunctional hybrid materials (alumina and titania) functionalized with both MOF and lanthanide complexes through coordination bonds. RSC Advances.2014. 4: 38761.
10. Kysil D.V., Vasin A.V., Sevostianov S.V., Degoda V.Ya, Strelchuk V.V., Naseka V.M., Piryatinski Yu.P., Tertykh V.A., Nazarov A.N., Lysenko V.S. Formation and luminescent properties of Al2O3:SiOC nanocomposites on the base of alumina nanoparticles modified by phenyltrimethoysilane. Nanoscale Research Letters. 2017. 12: 477.
11. Romero R., Santoyo V. R., Moncada Sán­chez C. D., Rosales M. M. Effect of aluminum precursor on physicochemical properties of Al2O3 by hydrolysis/precipitation method. Nova Scientia. 2018. 10: 83.
12. Nampi P., Moothetty P., Berry F.J., Morti­mer M., Warrier K. Aluminosilicates with varying alumina-silica ratios: synthesis via a hybrid sol-gel route and structural characterisation. Dalton Transactions. 2010. 39: 5101.
13. Krasil’nikov V.N., Baklanova I.V. , Zhukov V.P., Medvedeva N.I., Tyutyunnik A.P., Samigullina R.F., Gyrdasova O.I., Melkozerova M.A. The luminescence properties of g-Al2O3:C produced by precursor method. Journal of Alloys and Compounds. 2017. 698: 1102.
14. Kudrenko Е.А., Shmyt’ko I.M., Strukova G.K. Structure of precursors of complex oxides of rare-earth elements prepared by solvent thermolysis. Physics of the Solid State. 2008. 50: 924.
15. James R.W. The Optical Principles of the Diffraction of X-rays. The Crystalline state − Vol II. London: G. Bell аnd Sons Limited, 1962. − 664 p.
16. Carlos L.D., Bermudez V.D., Ferreira R.A. Sol-gel derived urea cross-linked organically modified silicates. 2. Blue-light emission. Chemistry of Materials. 1999. 11: 581.
17. Physics of disorder materials.ed. by D. Adler, H. Fritzche, S. Ovshinsky. − New York: Plenum Press, 1985. − 850 p.
18. Yu Z., Wang C., Gu X., Li C. Photo­luminescent properties of boehmite whisker prepared by sol-gel process. Journal of Luminescence. 2004. 106: 153.
19. Okuno M., Zotov N., Schmücker M., Schneider H. Structure of SiO2–Al2O3 glasses: Combined X-ray diffraction, IR and Raman studies. Journal of Non-Crystalline Solids. 2005. 351: 1032.
20. Iler R.K. The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica. − Wiley, 1979. − 866 p.
21. Lange K.R. The characterization of molecular water on silica surfaces. Journal of Colloid Science. 1965. 20: 231.
22. Armistead C.G., Hockey J.A. Reactions of chloromethyl silanes with hydrated Aerosil silicas. Transactions of the Faraday Society. 1967. 63: 2549.
23. Skuja L. Optically active oxygen-deficiency-related centers in amorphous silicon dioxide. Journal of Non-Crystalline Solids. 1998. 239: 16.
24. Trukhin A., Poumellec B. Photosensitivity of silica glass with germanium studied by photoinduced of thermally stimulated luminescence with vacuum ultraviolet radiation. Journal of Non-Crystalline Solids. 2003. 324: 21.
25. Cannas M., Agnello S., Boscaino R. Ultraviolet emission lifetime in Si and Ge oxygen deficient centers in silica. Journal of Non-Crystalline Solids. 2003. 322: 129.
26. Fitting H. How to make silica luminescent? Journal of Luminescence. 2009. 129: 1488.
27. Carlos L.D., Ferreira R.A., Pereira R.N. White-light emission of amine-functionalized organic/inorganic hybrids: emitting centers and recombination mechanisms. The Journal of Physical Chemistry B. 2004. 108: 14924.
28. Fu L., Sa Ferreira R.A., Silva N.J.O. Photoluminescence and quantum yields of urea and urethane cross-linked nanohybrids derived from carboxylic acid solvolysis. Chemistry of Materials. 2004. 16: 1507.
29. Nobre S.S., Lima P.P., Mafra L. Energy transfer and emission quantum yields of organic-inorganic hybrids lacking metal activator centers. The Journal of Physical Chemistry C. 2007. 111: 3275.
30. Yoldas B.E. Photoluminescence in chemically polymerized SiO2 and Al2O3–SiO2 systems. Journal of Materials Research. 1990. 5: 1157.
31. Garcia J., Mondragon M., Tellez C. Blue emission in tetraethoxysilane and silica gels. Materials Chemistry and Physics. 1995. 41: 15.
32. Green W.H., Le K.P., Grey J. White phosphors from a silicate-carboxylate sol-gel precursor that lack metal activator ions. Science. 1997. 276: 1826.
33. Brankova T., Bekiari V., Lianos P. Pho­toluminescence from sol-gel organic/inorganic hybrid gels obtained through carboxylic acid solvolysis. Chemistry of Materials. 2003. 15: 1855.

Downloads

Download data is not yet available.