bioenergy complex, wastewater, heavy metals, humus, fertilizers.

How to Cite

Pershina, K., Boychuk, O., Bystryk, O., Gayday, O., Lyashevsky, O., Koval, L., & Perynska, N. (2020). ABOUT POSSIBILITIES OF RECYCLING WASTEWATERS FROM THE BIOENERGETIC COMPLEX . Ukrainian Chemistry Journal, 86(8), 126-133. https://doi.org/10.33609/2708-129X.86.8.2020.126-133


The analysis of the general physical and chemical indicators and the maintenance of heavy metals of sewage of a bioenergy complex is carried out. It is established that the sedimentation rate of suspended particles in wastewater depends on the location of filtration fields with wastewater from the source of contamination. At the source, there is a maximum excess of the number of suspended particles with a minimum deposition rate. In all wastewater samples, the indicators of chemical and biological oxygen consumption exceeded the permissible standards by three orders of magnitude for reservoirs for recreational water use and those located within the settlements. Thus, this water cannot be discharged into any natural water basin and requires additional purification from organic matter. Also for this water, the use of biological treatment methods without additional chemicals is ineffective. The presence of a complex of macro- and microelements in wastewater in combination with a high content of organic matter (humus and sulfonic acids) may be the basis for their use as raw material for fertilizer production.



1. https://biz.liga.net/agritech/all/article/energetika-othodov-ili-kogda-agrosektor-stanet-energonezavisimym
2. Food and Agriculture Organization of United Nations: Worlds Fertilizer Trends and Outlook to 2018. Food and Agriculture Organization of United Nations, Rome (2015)
3. Guidi, C.: Relation between organic matter of sewage sludge and physicochemical properties of soil. In: L’Hermite P. et al. (eds.), Characterization, Treatment and Use of Sewage Sludge, pp. 530–544. Springer Netherlands (1981).
4. Малиш Н. Важкі метали у грунтах: стаття / Н. Малиш. – Вісник НАУ. 2009.
5. Cieślik, M.B., Namieśnik, J., Konieczka, P.: Review of sewage sludge management: standards, regulations and analytical methods. J. Clean. Prod. 90, 1–15 (2015).
6. ISO 8288. Определение кобальта, никеля, меди, цинка, кадмия и свинца. — 1987, — 18 с
7. Новиков Ю.В. Методы исследования качества воды водоемов [под ред. А.П.Шицковой] / Ю.В. Новиков, К.О. Ласточкина, — Москва, — 1990, — 400 с.
8. ДСТУ ISO 6060:2003. Якість води. Визначення хімічної потрібності у кисні. (ISO 6060:1989, IDТ)
9. ГОСТ 2761-84 “Джерела централізованого господарсько – питного водопостачання. Гігієнічні, технічні вимоги і правила вибору” – 1986.
10. Санитарные правила и нормы охраны поверхностных вод от загрязнения Сан-ПиН 4630-88. – М., 1989.
11. Воюцкий С.С. Курс коллоидной химии. Л.: Химия, 1984. 300 с.
12. Водне господарство України / За ред. А.В. Яцика, В.М. Хорєва. – К.: Генеза, 2000. – 456 с.
13. Uyovbisere, E.O., and G. Lombim. 1991. “Efficient fertilizer use for increased crop production: The sub-humid Nigeria experience.” Fertilizer research 29:81–94.
14. Sarkar, A.N., and R.G. Wynjones. 1982. “Effect of rhizosphere pH on the availability and uptake of Fe, Mn and Zn.”Plant and Soil 66:361–372
15. E. Aguilera, L. Lassaletta, A. S. Cobena, J. Garnier, A.Vallejo. The potential of organic fertilizers and water management to reduce N2O emissions in Mediterranean climate cropping systems. A review// Agriculture, Ecosystems & Environment, Vol. 164 (1).– 2013, - P.- 32-52.
16. Pershina E.D., Kazdobin K.A. On the transformation of trichloroacetic acid in aqueous media//Journal of Water Chemistry and Technology, № 36. –2014,- Р.-211–216


Download data is not yet available.