THE USE OF CYCLODEXTRINS TO INCREASE THE EFFICIENCY OF TITANIUM DIOXIDE IN THE HETEROGENEOUS CATALYSIS
№2

Keywords

cyclodextrin, titanium dioxide, photodegradation, photocatalysis, organic pollutants

How to Cite

Bardadym, Y., Kobylinskyi, S., Kobrina, L., & Riabov, S. (2020). THE USE OF CYCLODEXTRINS TO INCREASE THE EFFICIENCY OF TITANIUM DIOXIDE IN THE HETEROGENEOUS CATALYSIS. Ukrainian Chemistry Journal, 86(7), 32-52. https://doi.org/10.33609/2708-129X.86.7.2020.32-52

Abstract

Photocatalytic oxidation is a very young direction, but in the same time it is one of the most promising, safe and effective methods of removing organic pollutants (in particular dyes and microbial pathogens) from the aquatic environment. General information on titanium dioxide, cyclodextrin and its derivatives is presented in this literature review. The results of recent studies regarding the practical application of titanium dioxide and cyclodextrins for the treatment of wastewaters and purification them from organic pollutants of various nature by the methods of heterogeneous photocatalysis are given, the principles of their work as a photocatalytic system are discussed in detail. These compounds are of interest in terms of both scientific search and practical application due to their semiconductor properties, nontoxicity, chemical stability, high photocatalytic activity.

https://doi.org/10.33609/2708-129X.86.7.2020.32-52
№2

References

1. Khin M. M., Nair A. S., Babu V. J., Murugan R., Ramakrishna S. A review on nanomaterials for environmental remediation. Energy Environ. Sci. 2012. 5: 819. https://doi.org/10.1039/C2EE21818F
2. Wang W., Tad M. O., Shao Z. Research progress of perovskite materials in photocatalysis and photovoltaics-related energy conversion and environmental treatment. Chem. Soc. Rev. 2015. 44: 5371. https://doi.org/ 10.1039/C5CS00113G
3. Ameta R., Benjamin S., Ameta A., Ameta S. Photocatalytic degradation of organic pollutants: a review. Mater. Sci. Forum. 2012. 734: 247. https://doi.org/10.4028/www.scientific.net/MSF.734.247
4. Wang J., Wang S. Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: a review. J. Environ. Manag. 2016. 182: 620. https://doi.org/10.1016/j.jenvman. 2016.07.049
5. Ibrahim R. K., Hayyan M., AlSaadi M. A., Hayyan A., Ibrahim S. Environmental application of nanotechnology: air, soil, and water. Environ. Sci. Pollut. R. 2016. 23: 13754. https:// doi.org/10.1007/s11356-016-6457-z
6. Brillas E., Martınez-Huitle C. A. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Appl. Catal. B Environ. 2015. 166: 603. https://doi.org/10.1016/j.apcatb.2014.11.016
7. Forgacs E., Cserha´ti T., Oros G. Removal of synthetic dyes from wastewaters: a review. Environ. Int. 2004. 30: 953. https://doi.org/ 10.1016/j.envint.2004.02.001
8. Hao O. J., Kim H., Chiang P. Decolorization of wastewater. Crit. Rev. Environ. Sci. Technol. 2000. 30: 449. https://doi.org/10.1080/10643380091184237
9. Reddy P. A. K., Reddy P. V. L., Kwon E., Kim K., Akter T., Kalagara S. Recent advances in photocatalytic treatment of pollutants in aqueous media. Environ. Int. 2016. 91: 94. https://doi.org/10.1016/j.envint.2016.02.012.
10. Serpone N., Emeline A. V. Semiconductor photocatalysis – past, present, and future outlook. J. Phys. Chem. Lett. 2012. 3: 673. https://doi. org/10.1021/jz300071j
11. Li Y., Chen F., He R., Wang Y., Tang N. Semiconductor Photocatalysis for Water Purification. Nanos. Mater. in Water Purif. 2019. 24: 689. https://doi.org/10.1016/B978-0-12-813926-4.00030-6
12. Hobbs C. E. Recent Advances in Bio-Based Flame Retardant Additives for Synthetic Polymeric Materials. Polymers. 2019. 11: 224. https://doi.org/10.3390/polym11020224
13. Azeez F., Al-Hetlani E., Arafa M., Abdelmonem Y., Nazeer A. A., Amin M. O., Madkour M. The effect of surface charge on photocatalytic degradation of methylene blue dye using chargeable titania nanoparticles. Scientific Reports. 2018. 8: 1. https://doi.org/10.1038/s41598-018-25673-5
14. Marks R., Yang T., Westerhoff P., Doudrick K. Comparative analysis of the photocatalytic reductionof drinking water oxoanions using titanium dioxide. Water Res. 2016. 104: 11. https://doi.org/ 10.1016/j.watres.2016.07.052
15. Zhang D., Lee C., Javed H., Yu P., Kim J.-H., Alvarez P. J. Easily-recoverable, micron-sized TiO2 hierarchical spheres decorated with cyclodextrin for enhanced photocatalytic degradation of organic micropollutants. Environ. Science & Tech. 2018. 52: 12402. https://doi.org/10.1021/acs.est.8b04301
16. Tsang C. H. A., Li K., Zeng Y., Zhao W., Zhang T., Zhan Y., Xie R., Leung D. Y.C., Huang H. Titanium oxide based photocatalytic materials development and their role of in the air pollutants degradation: Overview and forecast. Environ. Internat. 2019. 125: 200. https://doi.org/10.1016/j.envint.2019.01.015
17. Khalid N.R., Majid A., Tahir M. B., Niaz N. A., Khalid S. Carbonaceous-TiO2 nanomaterials for photocatalytic degradation of pollutants. Ceram. Internat. 2017. 43: 14552. https://doi.org/10.1016/j.ceramint.2017.08.143
18. Zangeneh H., Zinatizadeh A. A. L., Habibi M., Akia M. Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides. J. Ind. Eng. Chem. 2015. 26: 1.
19. Chen X., Liu D., Wu Z., Cravotto G., Wu Z., Ye B. C. Microwave-assisted rapid synthesis of Ag-β-cyclodextrin/TiO2 /AC with exposed{001} facets for highlyefficientnaphthalene degradation under visible light. Catalysis Commun. 2018. 10: 496. https://doi.org/10.1016/j.catcom.2017.10.026
20. Vasilyeva K. L. The study of phase transformations in the surface layer of titanium dioxide. Journal of Applied Chemistry. 2018. 82: 731. [in Russian]
21. Hu X. Design, fabrication and modification of nanostructured semiconductor materials for environmental and energy applications. Langmur. 2006. 26: 3031.
https://doi.org/10.1021/la902142b
22. Ahmed A. Y, Kandiel T. A., Oekermann T. Photocatalytic activities of different well-defined crystal TiO2 surfaces: anatase versus rutile. Journal of Phys. Chem. Let. 2011. 2: 2461. https://doi.org/10.1021/jz201156b
23. Hurum, D. C.; Agrios, A. G.; Gray, K. A.; Rajh, T.; Thurnauer M. C. Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR. J. Phys. Chem. B. 2003. 107: 4545. https://doi.org/10.1021/jp0273934
24. Alonso-Tellez A., Robert D., Keller V., Keller N. H2S photocatalytic oxidation over WO3/TiO2 Hombikat UV100. Environ. Sci. Pollut. Res. 2014. 21: 3503.
https://doi.org/10.1007/s11356-013-2329-y
25. Ahmed S. N., Haider W. Heterogeneous photocatalysisand its potential applications in water and wastewater treatment. Nanotechnology. 2018. 29: 1.
https://doi.org/10.1088/1361-6528/aac6ea
26. Zhang S., Lu X Treatment of wastewater containing Reactive Brilliant Blue KN-R using TiO2/BC composite as heterogeneous photocatalyst and adsorbent. Chemosphere. 2018. 206: 777. https://doi.org/10.1016/j. chemosphere.2018.05.073
27. Yang D. Material for a Sustainable Environment. IntechOpen. 2018. 3: 504. https://doi.org/10.5772/intechopen.70290.
28. Schneider J., Matsuoka M., Takeuchi M., Zhang J., Horiuchi Y., Anpo M., Bahnemann D. W. Understanding TiO2 photocatalysis: mechanisms and materials. Chem. Rev. 2014. 114: 9919. https://doi.org/10.1021/cr5001892
29. Frank S. N., Bard A. J. Heterogeneous pfotocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders. J. Phys. Chem. 1977. 81: 1484. https://doi.org/10.1021/j150376a023
30. Liu L., Chen X. Titanium dioxide nanomaterials: self-structural modifications. Chem. Rev. 2014. 114: 9890.https://doi.org/10.1021/cr400624r
31. Verbruggen S. W. TiO2 photocatalysis for the degradation of pollutants in gas phase: from morphological design to plasmonic enhancement. J. Photochem. Photobiol. C: Photochem. Rev. 2015. 24: 64. https://doi.org/10.1016/j.jphotochemrev.2015.07.001
32. Khan M. M., Ansari S. A., Pradhan D., Ansari M. O., Han D. H., Lee J., Cho M. H. Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies. J. Mater. Chem. A. 2014. 2: 637. https://doi.org/10.1039/C3TA14052K
33. Radu C., Parteni O., Ochiuz L. Application of cyclodextrins in medical textiles. Journal of Controlled Release. 2016. 224: 146. https://doi. org/10.1016/j.jconrel.2015.12.046
34. Zhao F., Repo E., Yin D., Meng Y., Jafari S., Sillanpää M. EDTA-cross-Linked β-cyclodextrin: An environmentally friendly bifunctional adsorbent for simultaneous adsorption of metals and cationic dyes. Environmental Science and Technology. 2015. 49: 10570. https://doi.org/10.1021/acs.est.5b02227
35. Mura P. Analytical techniques for characterization of cyclodextrin complexes in aqueous solution. Journal of Pharmaceutical and Biomedical Analysis. 2014. 101: 238. https:// doi.org/10.1016/j.jpba.2014.02.022
36. Sherje A. P., Dravyakar B. R., Kadam D., Jadhav M. Cyclodextrin-based nanosponges. Carbohydrate Polymers. 2017. 173: 37. https:// doi.org/10.1016/j.carbpol.2017.05.086
37. Yan J., Zhu Y., Qiu F., Zhao H., Yang D., Wang J., Wen W. Kinetic, isotherm and thermodynamic studies for removal of methyl orange using a novel β-cyclodextrin functionalized graphene oxide-isophorone diisocyanate composites. Chem. Eng. Res. Des. 2016. 106: 168. https://doi.org/10.1016/j.cej.2015.06.030
38. Opanasenko O. A., Ryabov S. V., Sinelnikov S. I. Synthesis and properties of crosslinked B-cyclodextrin-containing copolymers and their role in photocatalytic processes. Ukr. Chem. Journ. 2014. 80: 58.
39. Kurkov S. V., Loftsson T. Cyclodextrins. Int. J. Pharm. 2013. 453: 167. https://doi.org/10.1016/j.ijpharm.2012.06.055
40. Alongi J., Poskovic M., Visakh P. M., Frache A., Malucelli G. Cyclodextrinnanosponges as novel green flame retardants for PP, LLDPE and PA6. Carbohydrate Polymers. 2012. 88: 1387. https://doi.org/10.1016/j.carbpol.2012.02.038
41. Cina V., Russo M., Lazzara G., Martino C. D., Meo L. P. Pre- and post-modification of mixed cyclodextrin-calixarene co-polymers: A routetowards tenability. Carbohydrate Polymer. 2017. 10: 1393. https://doi.org/10.1016/j.carbpol. 2016.11.018
42. Daga M., Ullio C., Argenziano M., Dianzani C., Cavalli R., Trotta F. GSH-targeted nanosponges increase doxorubicin-induced toxicity in vitro andin vivo in cancer cells with high antioxidant defences. Free Radical Biology and Medicine. 2016. 97: 24. https://doi.org/10.1016/j.freeradbiomed.2016.05.009
43. Sikder T., Rahman M., Hosokawa J. T., Kurasaki M., Saito T. Remediation of water pollution with native cyclodextrins and modified cyclodextrins. Chemical Engineering Journal. 2019. 355: 920. https://doi.org/10.1016/j.cej.2018. 08.218
44. Chen B., Chen S., Zhao H., Liu Y., Long F., Pan X. A versatile β-cyclodextrin and polyethyleneimine bi-functionalized magnetic nanoadsorbent for simultaneous capture of methyl orange and Pb(II) from complex wastewater. Chemosphere. 2018. 216: 605. https://doi.org/10.1016/j.chemosphere.2018.10.157
45. Alsbaiee А., Smith B. J., Xiao L., Ling Y., Helbling D. E., Dichtel W. R. Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer. Nature. 2016. 529: 190. https://doi.org/10.1038/nature16185
46. Guanghui W., Qi P., Xue X. Photodegradation of bisphenol Z by UV irradiation in the presence of β-cyclodextrin. J. Science Direct. 2007. 67: 762. https://doi.org/10.1016/j.chemosphere. 2006.10.041
47. Wang N., Zhou L., Guo J., Ye Q., Lin J. M., Yuan J. Adsorption of environmental pollutants using magnetic hybrid nanoparticles modified with bcyclodextrin. Appl. Surf. Sci. 2014. 305: 267.https://doi.org/10.1016/j.apsusc.2014.03.054
48. Lu F., Astruc D. Nanomaterials for removal of toxis elements from water. Coordinational Chemistry Reviews. 2018. 356: 147. https://doi.org/10.1016/j.ccr.2017.11.003
49. Wang G., Wu F., Zhang X. Enhanced TiO2 photocatalytic degradation of bisphenol E by β-cyclodextrin in suspended solutions. J. of Hazardous Materials. 2006. 133: 85. https://doi.org/10.1016/j.jhazmat.2005.09.058
50. Ryabov S. V., Boyko V. V., Kobrina L. V. Cyclodextrin-containing polymers: synthesis and use. Polymer journal. 2018. 40: 141. [in Ukrainian].
51. Euvrard E., Morin-Crini N., Druart C., Bugnet J., Martel B., Cosentino C. Cross-linked cyclodextrin-based material for treatment of metals and organic substances present in industrial discharge waters. Beilstein Journal of Organic Chemistry. 2016. 12: 1826. https://doi.org/10.3762/bjoc.12.172
52. Mousavi S. H., Mohammadi A. A cyclodextrin/ glycine-functionalized TiO2 nanoadsorbent: Synthesis, characterization and application for the removal of organic pollutants from water and real textile wastewater. Process Safety and Environmental Protection. 2018. 114: 1. https://doi.org/10.1016/j.psep.2017.12.004
53. Fallah Z, Isfahani H. N, Tajbakhsh M. Cyclodextrin- triazole-titanium Based Nanocomposite: Preparation, Characterization and Adsorption Behavior Investigation. Process Safety and Environmental Protection. 2019. 124: 251. https://doi.org/10.1016/j.psep.2019.02.016
54. Zhao R., Wang Y., Li X., Sun B., Jiang Z., Wang C. Water insoluble sericin/β-cyclodextrin/PVA composite electrospun nanofibers as effective adsorbents towards methylene blue. Colloids Surf., B: Biointerfaces. 2015. 136: 375. https://doi.org/10.1016/j.colsurfb.2015.09.038
55. Chen J. R., Qiu F. X., Xu W. Z. S., Cao S., Zhu, H. J. Recent progress in enhancing photocatalytic efficiency of TiO2-based materials. Appl. Catal., A: Gen. 2015. 495: 131. https://doi.org/10.1016/j.apcata.2015.02.013
56. Yang Z., Zhang X., Cui J. Self-assembly of bioinspired catecholic cyclodextrin TiO2 heterosupramolecule with high adsorption capacity and efficient visible light photoactivity. Applied Catalysis B: Environmental. 2014. 148: 243. https://doi.org/10.1016/j.apcatb.2013.11.002
57. Lu S., Sun N., Wang T. Research on Photocatalytic Degradation of Methyl Orange by a β-Cyclodextrin/Titanium Dioxide Composite. Gen. Chem. 2017. 3: 164. https://doi.org/10.21127/yaoyigc20170007
58. Sangari N. U. A brief Review on the Applications of Zn and TiO2 in Photocatalysis and their Modification with β-Cyclodextrin. Asian J. Research Chem. 2018. 11: 681. https://doi.org/10.5958/0974-4150.2018.00121.9
59. Zhang X., Li X., Deng N. Enhanced and selective degradation of pollutants over cyclodextrin/ TiO2 under visible light irradiation. Industrial and Engineering Chemistry Research. 2012. 51: 704. https://doi.org/10.1021/ie201694v
60. Radchenko O., Sinelnikov S., Moskalenko O., Riabov S. Nanocomposites based on titanium dioxide, modified by β-cyclodextrin containing copolymers. J. Appl. Polym. 2018. 135: 46373. https://doi.org/10.1002/app.46373
61. Opanasenko O. A., Ryabov S. V., Sinelnikov S. I., Laptiy S. V. Synthesis and properties of titanium dioxide modified with β-cyclodextrin- containing polymers. Ukr. Chem. Journ. 2015. 81: 68. [in Ukrainian].
62. Wang G., Wu F., Zhang X., Luo M., Deng N. Enhanced photodegradation of bisphenol A in the presence of β-cyclodextrin under UV light. Journal of Chemical Technology and Biotechnology. 2006. 81: 805. https://doi.org/10.1002/jctb.1513
63. Zhou Y., Gu X., Zhang R., Lu J. Influences of various cyclodextrins on the photodegradation of phenol and bisphenol A under UV light. Ind. Eng. Chem. Res. 2015. 54. 426. https://doi.org/10.1021/ie503414k
64. Rajalakshmi S., Pitchaimuthu S., Kannan N., Velusamy P. Enhanced photocatalytic activity of metal oxides/β-cyclodextrin nanocomposites for decoloration of Rhodamine B dye under solar light irradiation. Applied Water Science. 2014. 71: 115. https://doi.org/10.1007/s1320101402235
65. Li J., Jia S., Sui G., Du L. Preparation of a cerium/ titanium composite with porous structure and enhanced visible light photocatalytic activity using β cyclodextrin polymer microspheres as the template. Chemical Papers. 2017. 72: 369. https://doi.org/10.1007/s1169601702865
66. Velusamy P., Pitchaimuthu S., Rajalakshmi S., Kannan N. Modification of the photocatalytic activity of TiO2 by βcyclodextrin in decoloration of ethyl violet dye. Journal of Advanced Research. 2014. 5: 19. https://doi.org/10.1016/j.jare.2012.10.001
67. Rajalakshmi S., Pitchaimuthu S., Kannan N., Velusamy P. Photocatalytic effect of β-cyclodextrin on semiconductors for the removal of acid violet dye under UV light irradiation. Desalination and Water Treatment. 2014. 52: 3432. https://doi.org/10.1080/19443994.2013.809024
68. Pitchaimuthu S., Velusamy P. Enhanced photocatalytic activity of CeO2 using β-cyclodextrin on visible light assisted decoloration of methylene blue. Water Science & Technology. 2014. 69: 113. https://doi.org/10.2166/wst.2013.553
69. Velusamy P., Lakshmi G., Pitchaimuthu S., Rajalakshmi S. Investigation of photocatalytic activity of (ZnO/TiO2) modified by β-cyclodextrin in photodecoloration of rhodamine B under visible light irradiation. Journal of Environmental Science and Pollution Research. 2015. 1: 1.
70. San Keskin N. O., Celebioglu A., Sarioglu O. F., Uyar T., Tekinay T. Encapsulation of living bacteria in electrospun cyclodextrin ultrathin fibers for bioremediation of heavy metals and reactive dye from wastewater. Colloids and Surfaces B: Biointerfaces. 2018. 161: 169. https://doi.org/10.1016/j.colsurfb.2017.10.047
71. Mohammadi A., Veisi P. High adsorption performance of β-cyclodextrin-functionalized multi-walled carbon nanotubes for the removal of organic dyes from water and industrial wastewater. Journal of Environmental Chemical Engineering. 2018. 6: 4634. https://doi.org/10.1016/j.jece.2018.07.002
72. Munikrishnappa C., Kumar S. Shivakumara S., Mohan Rao G., Munichandraiah N. The TiO2- graphene oxide-Hemin ternary hybrid composite material as an efficient heterogeneous catalyst for the degradation of organic contaminants. J. of Science: Advanced Materials and Devices. 2019. 4: 80. https://doi.org/10.1016/j.jsamd.2018.12.003
73. Ihsanullah, Abbas A., Al-Amer A. M., Laoui T., Al-Marri M. J., Nasser M. S., Atieh M. A. Heavy metal removal from aqueous solution by advanced carbonnanotubes. Separation and Purification Technology. 2016. 157: 141. https:// doi.org/10.1016/j.seppur.2015.11.039
74. Mamba G., Mbianda X. Y., Govender P. P. Phosphorylated multiwalled carbon nanotube-cyclodextrin polymer: Synthesis, characterisation and potential application in water purification. Carbohydrate Polymers. 2013. 98 (1): 470. http://dx.doi.org/10.1016/j.carbpol. 2013.06.034
75. Zhu H., Chen D., Li N., Xu Q., Li H., He J., Lu J. Cyclodextrin-functionalized Ag/AgCl foam with enhanced photocatalytic performance for water purification. J. of Colloid and Interface Science. 2018. 531 (1): 11. https://doi.org/10.1016/j.jcis.2018.07.045
76. Gupta V. K., Moradi O., Tyagi I., Agarwal S., Sadegh H., Shahryari-Ghoshekandi R., Garshasbi A. Study on the removal of heavy metal ions fromindustry waste by carbon nanotubes: Effect of the surface modification: Areview. Environmental Science and
Technology. 2016. 46 (2): 93. https://doi.org/10.1080/10643389.2015.1061874
77. Qui P., Wang S., Tian C., Lin Z. Adsorption of low-concentration mercury in water by 3D cyclodextrin/graphene composites: Synergistic
effect and enhancement mechanism. Environmental Pollution. 2019. 252: 1133. https://doi.org/10.1016/j.envpol.2019.06.034
78. Chibban M., Zerbet M., Carja G., Sinan F. Application of low-cost adsorbents for arsenic removal. Journal of Environmental Chemistry and Ecotoxicology. 2012. 4 (5): 91. https://doi.org/10.5897/JECE11.013
79. Taka A. L., Pillay K., Mbianda X. Y. Nanosponge cyclodextrin polyurethanes and their modification withnanomaterials for the removal of pollutants from waste water: A review. Carbohydrate Polymers. 2017. 159: 94. http://dx.doi.org/10.1016/j.carbpol.2016.12.027
80. Ahmed S. N., Haider W. Heterogeneous photocatalysis and its potensial applications in water and wastewater treatment: a review. Nanotechnology. 2018. 29 (34): 342001. http://dx.doi.org/10.1088/1361-6528/aac6ea

Downloads

Download data is not yet available.