functionalized surfactants, α-nucleophiles, micellar systems, hydroxylamine, oximes, amidoximes, hydroxamic acids, peroxides.

How to Cite

Popov, A., Kapitanov, I., Serdyuk, A., & Sumeiko, A. (2020). REACTIVITY OF NUCLEOPHILES AND α-EFFECT IN SUBSTITUTION PROCESSES AT ELECTRON - DEFICIENCY CENTERS. Ukrainian Chemistry Journal, 86(7), 3–31.


The review analyzes issues related to the reactivity of nucleophiles and the manifestation of the α-effect in substitution processes at electron-deficient centers. The fundamental aspects of this phenomenon, as well as the possibilities and prospects of using α-nucleophiles in systems for the highly efficient degradation of substrates - ecotoxicants of various natures, are discussed. In the first part of the review such aspects were observed: inorganic α-nucleophiles as the most effective class of reagents for the decomposition of organic phosphorus compounds, hydroxylamine, its N-alkyl derivatives, oximes, and hydroxamic acids, reactivity of the НОО– anion in the processes of acyl group transfer, reactivity of oximate ions, inorganic α-nucleophiles as the basis of formulations for the degradation of neurotoxins, vesicants, and organophosphorus pesticides, design of inhibited acetylcholinesterase reactivators based on hydroxylamine derivatives, ways of structural modification of α-nucleophiles and systems based on them. The data on the reactivity of typical inorganic α-nucleophiles in the cleavage of acyl-containing substrates, including phosphorus acid esters, which provide abnormally high reaction rates in comparison with other supernucleophiles, are analyzed. Various types of such α-nucleophiles, features of their structure and reactivity are considered. It was shown that an important feature of hydroxylamine, oximes, and hydroxamic acids is the presence of a fragment with adjacent O and N (–N – O – H) atoms containing one or more lone electron pairs, which determines their belonging to the class of α-nucleophiles. It has been shown that a many of factors can be responsible for the manifestation of the α-effect and its magnitude, the main of which is the destabilization of the ground state of the nucleophile due to repulsion of lone electron pairs, stabilization of the transition state, the unusual thermodynamic stability of reaction products, solvation effects of the solvent, type of hybridization of the electrophilic center, etc.


1. John O., Edwards R., Pearson G. The Factors Determining Nucleophilic Reactivities. J. Am. Chem. Soc. 1962. 84 (1): 16.
2. Nick J., John O. Edwards R. The Alpha Effect. Review. International J. Chem. kinetics. 1973. 5: 1.
3. Popov A., Savelova V. Modern approaches to the design of highly efficient nucleophilic systems. Theoret. and Experim. Chem. 1999. 35 (1): 1.
4. Popov A. Design of green microorganized systems or decontamination of ecotoxicants. Pure Appl. Chem. 2008. 80 (7): 1381.
5. Yu-Chu Y., James A., Baker J. Ward R. Decontamination of Chemical Warfare Agents. Chem. Rev. 1992. 92 (8): 1729.
6. Grekov A., Veselov V. α-Effect in the chemistry of organic compounds. Advances in Chem. 1978. 47 (7): 1200.
7. Séguès B., Pérez E., Rico-Lattes I., Rivière M., Lattes A. Décontamination chimique. I. Déphosphorylation des composés organophosphorés. Bull. Soc. Chim. Fr. 1996. 133: 925.
8. Latt A., Rico-Latt I., Perez E., Krutikov V., Amada B. The use of organized molecular systems for the chemical decomposition of chemical warfare agents. J. Russ. Chem. Society to them D. Mendeleev. 2007. 51 (6): 36.
9. Popov A., Prokopieva T., Suprun I., Simanenko Y. The reactivity of inorganic nucleophiles in the transfer of phosphoryl and phosphonyl groups. Theoret. and Experim. Chem. 2000. 36 (4): 226.
10. Rappoport E., Liebmann J. The chemistry of Hydroxylamines, Oximes and Hydroxamic Acids. (England: John Wiley & Sons Ltd., 2009).
11. Morales-Rojas H., Moss R. Phosphorolytic Reactivity of o-Iodosylcarboxylates and Related Nucleophiles. Chem. Rev. 2002. 102: 2497.
12. Simanenko Y., Popov A., Prokopyeva T., Karpichev E., Savelova V., Suprun I., Banton K. Neo-organic anionic oxygen-containing nucleophiles are effective acceptors of the acyl group. Hydroxylamine – the «leader» in the series of α-nucleophiles. Russ. J. Org. Chem. 2002. 38 (9): 1341.
13. Green A., Sainsbury G., Saville B., Stansfield M. The Reactivity of Some Active Nucleophilic Reagents with Organophosphorus Anticholinesterases.
J. Chem. Soc. 1958. (4): 1583.
14. Kirby A., Younas M. The Reactivity of Phosphate Esters. Reactions of Diesters with Nucleophiles. J. Chem. Soc. (B). 1970. (6): 1165.
15. Jencks W., Gilchrist M. Nonlinear Structure-Reactivity Correlations. The Reactivity of Nucleophilic Reagents toward Esters. J. Am.
Chem. Soc. 1968. 90 (10): 2622.
16. Fountain K., Tady D., Paul T., Golynskiy M. The α-Effect in Benzyl Transfers from Benzylphenylmethyl Sulfonium Salts to N-Methylbenzohydroxamate Anions. J. Org. Chem. 1999. 64 (18): 6547.
17. Khairat M., John O., Edwards R. The Mechanism of the Oxidation of Some Aromatic Amines by Peroxyacetic Acid. J. Am. Chem. Soc. 1962. 84 (5): 763.
18. Buncel E., Wilson H., Chuaqui C. Reactivity-selectivity correlations. 4. The α-effect in SN2 reactions at sp3 carbon. The reactions of hydrogen peroxide anion with methyl phenyl sulfates. J. Am. Chem. Soc. 1982. 104 (18): 4896.
19. Hoz S., Buncel E. Pitfalls in the determination of the α-effect by a two-point analysis. The effect of solvent on the α-effect. Tetrahedron Lett. 1984. 25 (32): 3411.
20. Dixon J., Bruice T. Kinetic and thermodynamic nature of the α-effect for amine nucleophiles. J. Am. Chem. Soc. 1972. 94 (6): 2052.
21. Palling D., Jencks W. Nucleophilic reactivity toward acetyl chloride in water. J. Am. Chem. Soc. 1984. 106 (17): 4869.
22. Jeffrey J., Page M. Buffer catalysis in the hydrazinolysis of benzylpenicillin. J. Chem. Soc., Perkin Trans. 2. 1980. 220.
23. Bernasconi C., Leyes A., Eventova I., Rappoport Z. Kinetics of the Reactions of β-Methoxy- α-nitrostilbene with Methoxyamine and N-Methylmethoxyamine. Direct Observation of the Intermediate in Nucleophilic Vinylic Substitution. J. Am. Chem. Soc. 1995. 117 (6): 1703 .
24. Buncel E., Ik-Hwan Um. The α-effect and its modulation by solvent. Tetrahedron Lett. 2004. 60 (36): 7801.
25. DePuy С., Della E., Filley J., Grabowski J., Bierbaum V. Absence of an α-effect in the gasphase nucleophilic reactions of hydroperoxide ion. J. Am. Chem. Soc. 1983. 105 (8): 2481.
26. Saul W., Mitchel D., Schlegel B., Minot C., Eisenstein O. Theoretical studies of SN2 transition states, the alpha effect. Tetrahedron Lett. 1982. 23 (6): 615.
27. Moutiers G., Guével E., Cannes C., Terrier F., Buncel E. The α-Effect in SNAr Substitutions – Reaction between Oximate Nucleophiles and 2,4-Dinitrofluorobenzene in Aqueous Solution. Europ. J. Org. Chem. 2001. (17): 3279.
28. Ik-Hwan Um, Eun-Ju Lee, Jin-Ah Seok, Kyung- Hee Kim. The α-Effect in Reactions of sp-HybridizedCarbon Atom: Michael-Type Reactions of 1-Aryl-2-propyn-1-ones with Primary Amines. J. Org. Chem. 2005. 70 (19): 7530.
29. Fountain K., Felkerson C., Driskell J., Lamp B. The α-Effect in Methyl Transfers from S-Methyldibenzothiophenium Fluoroborate to Substituted N Methylbenzohydroxamates. J. Org. Chem. 2003. 68 (5): 1810.
30. Patterson E., Fountain K. On Gas Phase α-Effects. 1. The Gas-Phase Manifestation and
Potential SET Character. J. Org. Chem. 2006. 71 (21): 8121.
31. Aubort J., Hudson R. The α-effect of hydroxamicacids. J. Chem. Soc. D: Chem. Commun. 1970. (15): 938.
32. Ik-Hwan Um, Ji-Youn Lee, Sun-Young Bae, Buncel E. Effect of modification of the electrophilic center on the α-effect. Can. J. Chem. 2005. 83: 1365.
33. Nomura Y., Kubozono T., Hidaka M., Horibe M., Mizushima N., Yamamoto N., Takahashi T., Romiyama M. Predominant role of basicity of leaving group in α effect for nucleophilic ester cleavage. Bioorg. Chem. 2004. 32: 26.
34. Solomoichenko T., Sadovskii Y., Prokop’eva T., Karpichev Y., Kapitanov I., Piskunova Zh., Savelova V., Popov A. Micellar effects of surfactants in cleavage of 4 nitrophenyl diethylphosphonate by hydroperoxide anion. Theoret. and Experim. Chem. 206. 42 (6): 364.
35. Sadovskii Y., Solomoichenko T., Turovskaya M., Kapitanov I., Piskunova Zh., Kostrikin M., Prokop’eva T., Popov A. Peroxyhydrolysis of 4-nitrophenyl diethylphosphate in micellar systems based on imidazolium gemini surfactants. Theoret. and Experim. Chem. 2012. 48 (2): 122.
36. Turovskaya M., Mikhailov V., Burakov N., Kapitanov I., Zubareva T., Lobachev V., Panchenko B.,Prokop’eva T. Reactivity of inorganic α-nucleophiles in acylgroup transfer processes in water and surfactant micelles: I. Systems based on organic complexes of tribromide anion. Russ. J. Org. Chem. 2017. 53 (3): 351.
37. Albert L., Sergeant E. Ionization constants of acids and bases. (M.: Khimiya, 1964). [in Russian].
38. Jenks W. Catalysis in chemistry and enzymology. (М.: Мir, 1972). [in Russian].
39. Epstein J., Baver V., Saxe M., Demek M. The Chlorine-catalyzed Hydrolysis of Isopropyl Methylphosphonofluoride (Sarin) in Aqueous Solution. J. Am. Chem. Soc. 1956. 78 (8): 4068.
40. Jencks W., Carriuolo J. Reactivity of Nucleophilic Reagents toward Esters. J. Am. Chem. Soc.
1960. 82 (7-8): 1778.
41. Davis R., Nehring R., Blume W., Chuang C. The Oxibase Scale and Displacement Reactions. XVII. The Reaction of Nucleophiles with Ethyl Tosylate and the Extension of the Oxibase Skale. J. Am. Chem. Soc. 1969. 91(1): 91.
42. Dixon E., Bruice C. α-Effect. IV. Additional Observation on the α-Effect Employing Malachite Green as Substrate. J. Am. Chem. Soc.
1971. 93 (24): 6592.
43. Domingos J., Longhinotti E., Brandão T., Bunton C., Santos L., Eberlin M., Nome F. Mechanisms of Nucleophilic Substitution Reactions of Methylated Hydroxylamines with Bis(2,4-dinitrophenyl) phosphate. Mass Spectrometric Identification of Key Intermediates. J. Org. Chem. 2004. 69 (18): 6024.
44. Zubareva T., Prokop’eva T., Kapitanov I., Belousova I., Razumova N., Popov A. Reactivity of N-alkyl derivatives of hydroxylamine in decomposition of 4-nitrophenyl diethylphosphonate in water and in cetyltrimethylammonium bromide micelles. Theoret. and Experim. Chem. 2007. 43 (4): 247.
45. Prokop’eva T., Karpichev E., Belousova I., Turovskaya M., Shumeiko A.,Kostrykin M., Razumova N., Kapitanov I. Popov A. Characteristic features of the change in reactivity of supernucleophilic functional surfactants in acyl group transfer proceses. Theoret. Theoret. and Experim. Chem. 2010. 46 (2): 94.
46. Singh S., Karpichev Y., Sharma R., Sahu A., Satnami M., Ghosh K. From α-nucleophiles to functionalized aggregates: exploring the reactivity of hydroxamate ion towards esterolytic reactions in micelles. Org. Biomol. Chem. 2015. 13: 2827.
47. Hess R., Hengge A., Cleland W. Kinetic Isotope Effects for Acyl Transfer from p-Nitrophenyl Acetate to Hydroxylamine Show a pH-Dependent Change in Mechanism. J. Am. Chem. Soc. 1997. 119 (30): 6980.
48. Bruce T., Benkovich S. Mechanisms of bioorganic reactions. (М.: Mir, 1970). [in Russian].
49. Kirby A., Jencks W. The Reactivity of Nucleophilic Reagents toward the p-Nitrophenyl Phosphate Dianion. J. Am. Chem. Soc. 1965. 87 (14): 3209.
50. Behrmann E., Biallas M., Brass H., Edwards J., Isaaks M. Reactions of Phosphate Acid Esters with Nucleophiles. II. Survey of Nucleophiles Reacting with p-Nitrophenyl Methyl Phosphonate Anion. J. Org. Chem. 1970. 35 (9): 3069.
51. Davies D., Deary M. A convenient preparationof aqueous methyl hydroperoxide and a comparison of its reactivity towards triacetylethylenediamine
with that of other nucleophiles: the mechanism of peroxide bleach activation. J. Chem. Soc., Perkin Trans 2. 1992. (4): 559.
52. Sander E., Jencks W. General acid and base catalysis of the reversible addition of hydrogen peroxide to aldehydes. J. Am. Chem. Soc. 1968. 90 (16): 4377.
53. Hammond P., Kern C., Hong F., Kollmeyer T., Pang Y., Brimijoin S. Cholinesterase Reactivation in Vivo with a Novel Bis-Oxime Optimized by Computer-Aided Design. J. Pharmacol. Experim. Therap. 2003. 307 (1): 190.
54. Wang J, Gu J., Leszczynski J., Feliks M., Sokalski W. Oxime-Induced Reactivation of Sarin Inhibited AchE: A Theoretical Mechanisms Study. J. Phys. Chem. B. 2007. 111 (9): 2404.
55. Musilek K., Kuca K., Jun D., Dolezal M. Progress in Synthesis of New Acetylcholinesterase Reactivators During the Period 1990-2004.
Current Org. Chem. 2007. 11 (2): 229.
56. Kassa J., Kuca K., Bartosova L., Kunesova G. The Development of New Structural Analogues of Oximes for the Antidotal Treatment of Poisoning by Nerve Agents and the Comparison of Their Reactivating and Therapeutic Efficacy with Currently Available Oximes. Current Org. Chem. 2007. 11 (2): 267.
57. Musilek K., Holas O., Jun G., Dohnal V., Gunn-Moore F., Opletalova V., Dolezal M., Kuca K. Monooxime reactivators of acetylcholinesterase with (E)-but-2-ene linker – Preparation and reactivation of tabun- and paraoxon-inhibited acetylcholinesterase. Bioorg. Med. Chem. 2007.15 (21): 6733.
58. Yang G., Oh K., Park N., Jung Y. New oxime reactivators connected with CH2O(CH2)n OCH2 linker and their reactivation potency for organophosphorus agents-inhibited acetylcholinesterase. Bioorg. Med. Chem. 2007. 15 (24): 7704.
59. Musilek K., Kucera J., Jun D., Dohnal V., Opletalova V., Kuca K. Monoquaternary pyridinium salts with modified side chain-synthesis and evaluation on model of tabun- and paraoxon- inhibited acetylcholinesterase. Bioorg. Med. Chem. 2008. 16 (17). 8218.
60. Musilek K., Jun D., Cabal J., Kassa J., Gunn-Moore F., Kuca K. Design of a Potent Reactivator of Tabun-Inhibited Acetylcholinesterase-
Synthesis and Evaluation of (E)-1-(4-Carbamoylpyridinium)- 4-(4-hydroxyiminomethylpyridinium)- but-2-ene-dibromide (K203). J. Med. Chem. 2007. 50 (22): 5514.
61. Terrier F., Rodriguez-Dafonte P., Guével E., Moutiers G. Revisiting the reactivity of oximate α-nucleophiles with electrophilic phosphoruscenters. Relevance to detoxification of sarin, soman and DFP under mild conditions. Org. Biomol. Chem.2006. 4 (23): 4352.
62. Prokopyeva T., Simanenko Yu., Suprun I.,Savelova V., Zubareva T., Karpichev E. Nucleophilic
substitution at the tetracoordinated sulfur atom VI. The reactivity of oximeate ions. Russ. J. Org. Chem. 2001. 37 (5): 694.
63. Belousova I., Kapitanov I., Shumeiko A., Mikhailov V., Razumova N., Prokop’eva T., Popov A. Reactivity of functional detergentswith a pyridine ring and an α-nucleophile fragment in the head group. Theoret. and Experim.Chem. 2008. 44 (5): 292.
64. Kapitanov I., Belousova I., Shumeiko A., Kostrikin M., Prokop’eva T., Popov A. Supernucleophilic systems based on functionalized surfactants in the decompositi on of hydroxyimino derivative of gemini imidazolium surfactant. Russ. J. Org. Chem. 2013. 49 (9): 1291.
65. Jencks W., Brant S., Gandler J., Fendrich G., Nakamura C. Nonlinear Bronsted Correlations: The Roles of Resonance, Solvation and Changing Transion-State Structure. J. Am. Chem. Soc. 1982. 104 (25): 7045.
66. Simanenko Yu., Prokopyeva T., Savelova V., Zakalichnaya O., Belousova I., Popov A., Sakkulin
G. Nucleophilic substitution at the tetracoordinating sulfur atom. III. Reactivity of anionic oxygen-containing nucleophiles – arylate and alcoholate ions. Reakt. capable organ. connection. 1989. 26 (1): 30.
67. Savelova V., Karpichev E., Simanenko Yu., Prokopyeva T., Lobachev L., Belousova I. Nucleophilic substitution at a tetracoordinated sulfur atom. IV. The reactivity of anionic nitrogen-containing nucleophiles. Russ. J. Org. Chem. 1996. 32 (4): 551.
68. Talmage S., Watson A., Hauschild V., Munro N., King J. Chemical Warfare Agent Degradationand Decontamination. Current Org. Chem. 2007. 11 (3): 285.
69. Wagner G., Sorrick D., Procell L., Brickhouse M., Mcvey I., Schwartz L. Decontamination of VX, GD, and HD on a Surface Using Modified Vaporized Hydrogen Peroxide. Langmuir. 2007. 23 (3): 1178.
70. Cassgne Т., Cristau H., Delmas G., Desgranges M., Lion G., Magnaud G., Torreilles T., Virieux D. Destruction of Chemical Warfare Agents VX and Soman by α-Nucleophiles as Oxidizing Agents. Heteroatom Chem. – 2001. – 12, № 6. – P. 485–490.
71. Wagner G., Yu-Chu Yang. Rapid Nucleophilic/ Oxidative Decontamination of Chemical Warfare Agents. Ind. Eng. Chem. Res. 2002. 41 (8). 1925.
72. Patent US 006245957 B1. Wagner G., Yu-Chu Yang. Universal Decontaminating Solution for Chemical Warfare Agents. 2001.
73. Patent US 006723891 B1. Wagner G, Procell L., Yu-Chu Yang and other. Molybdate/Peroxide Microemulsions useful for Decontamination of Chemical Warfare Agents. 2004.
74. Aubry J., Bouttemy S. Preparative Oxidation of Organic Compounds in Microemulsions with Singlet Oxygen Generated Chemically by the Sodium Molybdate / Hydrogen Peroxide System. J. Am. Chem. Soc. 1997. 119 (23): 5286.
75. Karpichev E., Kapitanov I., Gathergood N., Soukup O., Hepnarova V., Jun D., Kusa A., Acetylcholinesterase reactivators based on oxime-functionalized biodegradable ionic liquids. Military Medical Science Letters. 2018. 87 (1): 87.
76. Marrs T., Ballantyne B. Pesticide Toxicology and International Regulation. (England: John Wiley & Sons Ltd., 2004).
77. Marrs T., Maynard R., Sidell F. Chemical Warfare Agents: Toxicology and Treatment. (England: John Wiley & Sons Ltd., 2007).
78. Franke Z. Chemistry of toxic substances. REFERENCES REFERENCES – М.: Khimiya, 1973). [in Russian].
79. Mashkovsky M. Drugs. – М.: Medicine, 1998. [in Russian].
80. Kenley R., Bedford C., Dailey O. Howd J., Miller A. Nonquaternary cholinesterase reactivators. 2. α-Heteroaromatic aldoximes and thiohydroximates as reactivators of ethyl methylphosphonyl- acetylcholinesterase in vitro. J. Med. Chem. 1984. 27 (9): 1201.
81. Tarkka R., Buncel E. Origin of the Bell-Shaped α-Effect-Solvent Composition Plots. pKa-Solvent Dependence of the α-Effect at a Phosphorus Center. J. Am. Chem. Soc. 1995. 117 (5): 1503.
82. Terrier F., Guével E., Chatrousse A., Moutiers G., Buncel E. The levelling effect of solvational imbalances in the reactions of oximate–nucleophiles with electrophilic phosphorus centers. Relevance to detoxification of organophosphorus esters. Chem. Commun. 2003. (5): 600.
83. Degorre F. Degorre F., Kiffer D., Terrier F. Sulfur derivatives of 2-oxopropanal oxime as reactivators of organophosphate-inhibited acetylcholinesterase
in vitro: synthesis and structure-reactivity relationships. J. Med. Chem. 1988. 31 (4): 757.
84. Green A., Saville B. The reaction of oximes with isopropyl methylphosphono-fluoridate (Sarin). J. Chem. Soc. 1956. 3887.
85. Han X., Balakrishnan V., Loon G., Buncel E. Degradation of the pesticide fenitrothion as mediated by cationic surfactants and α-nucleophilic reagents. Langmuir. 2006. 22 (21): 9009.
86. Han X., Balakrishnan V., Buncel E. Alkaline Degradation of the Organophosphorus Pesticide Fenitrothion as Mediated by Cationic C12, C14, C16, and C18 Surfactants. Langmuir. 2007. 23 (12): 6519.
87. Balakrishnan М., Han X., Loon G., Dust J., Toullec J., Buncel E. Acceleration of Nucleophilic Attack on an Organophosphorothioate Neurotoxin, Fenitrothion, by Reactive Counterion Cationic Micelles. Regioselectivity as a Probe of Substrate Orientation within the Micelle. Langmuir. 2004. 20 (16): 6586.
88. Omakor J., Onyido I., Loon G., Buncel E. Mechanisms of abiotic degradation and soil– water interactions of pesticides and other hydrophobic organic compounds. Part 3. Nucleophilic displacement at the phosphorrus centre of the pesticide fenitrothion [O,O-dimethyl O-(3-methyl-4-nitrophenyl) phosphorothioate] by oxygen nucleophiles in aqueous solution: α-effect and mechanism. J. Chem. Soc., Perkin Trans. 2. 2001. (3): 324.
89. Sidell F., Groff W. The Reactivatibility of Cholinesterase Inhibited by VX and Sarin in Man. Toxicol. Appl. Pharmacol. 1974. 27: 241.
90. Rider J., Moeller H., Puletti E., Swader J. Toxicity of Parathion, Systox, Octamethyl Pyrophosphoramide, and Methyl Parathion in Man.Toxicol. Appl. Pharmacol. 1969. 14: 603.
91. Grossblatt N. Possible Long-Term Health Effects of Short-Term Exposure to Chemical Agents. (Washington: National Academy Press, 1982. 1., 1984. 2 ).
92. Aurbek N., Thiermann H., Szinicz L., Eyer P., Worek V. Analysis of inhibition, reactivation and aging kinetics of highly toxic organophosphorus compounds with human and pig acetyl cholinesterase. Toxicology. 2006. 224 (1–2): 91.
93. Reiner E., Simeon-Rudolf V. Pyridinium, imidazolium and quinuclidinium compounds: toxicity and antidotal effects against the nerve agents tabun and soman. Arh. Hig. Rada Toxicol. 2006. 57: 171.


Download data is not yet available.